REPORT

Semi-Annual Groundwater Monitoring First Half 2011 American Cyanamid Superfund Site

Wyeth Holdings Corporation Bridgewater Township, New Jersey

July 2011

REPORT

Semi-Annual Groundwater Monitoring First Half 2011 American Cyanamid Superfund Site

Wyeth Holdings Corporation Bridgewater Township, New Jersey

Steven J. Roland, P.E. Program Director

July 2011

WYETH HOLDINGS CORPORATION, Bridgewater Township, NJ AMERICAN CYANAMID SUPERFUND SITE

SEMI-ANNUAL GROUNDWATER MONITORING REPORT

FIRST HALF 2011

CERTIFICATION

I certify under penalty of the law that the information provided in this document is true, accurate, and complete. I am aware that there are significant civil penalties for knowingly submitting false, inaccurate or incomplete information and that I am committing a crime of the fourth degree if I make a written false statement, which I do not believe to be true. I am also aware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

Russell Downey¹

Director of Environmental Engineering, Remediation & Transactions

Pfizer Inc

¹ Designated Signatory – Wyeth Holdings Corporation

Notary:

Mayan Lawn

Sworn to and subscribed

before me this

27 day of July 2011

Maryann Lawton
Notary Public
State of New Jersey
My Commission Expires
August 19, 2012

Wyeth Holdings Corporation 100 Route 206N M/S 611 Peapack, NJ 07977

Steven F. Kemp
Vice President
Wyeth Holdings Corporation
908-901-6558
Steven F. Kemp@pfizer.com

Wyeth

April 2, 2010

NJ Department of Environmental Protection Bureau of Federal Case Management Division of Responsible Party – Site Remediation 401 East State Street, 5th Floor, CN 028 Trenton, NJ 08625

ATTN: Haiyesh Shah, Remedial Project Manager

RE: Wyeth (f.k.a American Cyanamid Co.), Bound Brook, NJ: Administrative Consent Order dated May 25, 1988 and the Amended Consent Order, dated May 5, 1994.

Dear Mr. Shah:

Under Sections 7:14A-4.9 and 7:25C-1.5 of the New Jersey Administrative Code, a corporate officer of at least the level of vice president may delegate the authority to certify monitoring reports and other submissions to a "duly authorized representative" if written authorization is submitted to the lead agency.

On October 16, 2009 Pfizer Inc acquired Wyeth and its subsidiaries, including Wyeth Holdings Corporation. Pursuant to the authority granted to me as vice president of Wyeth Holdings Corporation, I hereby authorize Russell G. Downey, Director of Environmental Engineering, Remediation & Transactions for Pfizer Inc, to act as the duly authorized representative in all matters pertaining to the above-described Administrative Orders, effective immediately.

Please contact Russell G. Downey, at 908-901-6079, if you have any questions regarding this matter.

Sincerely,

Steven F. Kemp, Vice President Wyeth Holdings Corporation

cc: Russell G. Downey

Wyeth Holdings Corporation 100 Route 206N M/S 611 Peapack, NJ 07977

Steven F. Kemp
Vice President
Wyeth Holdings Corporation
908-901-6558

Steven.F.Kemp@pfizer.com

Wyeth

April 2, 2010

USEPA Region II Superfund Program 290 Broadway, 20th Floor New York, NY 10007

ATTN: Monica Baussan, Remedial Project Manager

RE: Wyeth (f.k.a American Cyanamid Co.), Bound Brook, NJ: Administrative Consent Order dated May 25, 1988 and the Amended Consent Order, dated May 5, 1994.

Dear Ms. Baussan:

Under Sections 7:14A-4.9 and 7:25C-1.5 of the New Jersey Administrative Code, a corporate officer of at least the level of vice president may delegate the authority to certify monitoring reports and other submissions to a "duly authorized representative" if written authorization is submitted to the lead agency.

On October 16, 2009 Pfizer Inc acquired Wyeth and its subsidiaries, including Wyeth Holdings Corporation. Pursuant to the authority granted to me as vice president of Wyeth Holdings Corporation, I hereby authorize Russell G. Downey, Director of Environmental Engineering, Remediation & Transactions for Pfizer Inc, to act as the duly authorized representative in all matters pertaining to the above-described Administrative Orders, effective immediately.

Please contact Russell G. Downey, at 908-901-6079, if you have any questions regarding this matter.

Sincerely,

Steven F. Kemp, Vice Presiden Wyeth Holdings Corporation

cc: Russell G. Downey

July 29, 2011

Mr. Haiyesh Shah

Case Manager New Jersey Department of Environmental Protection SRP-Bureau of Case Management Floor 5W, P.O. Box 420, Mail Code 401-05 401 East State Street, Trenton, New Jersey 08625

Mr. Mark Austin

Regional Project Manager U.S. ENVIRONMENTAL PROTECTION AGENCY 290 Broadway 20th Floor New York, NY 10007-1866

RE: Semi-Annual Groundwater Monitoring –First Half 2011 Former American Cyanamid Site Bridgewater Township, New Jersey

FILE: 4529/47194

Gentlemen:

On behalf of Pfizer Inc (Pfizer), enclosed is the First Half 2011 Semi-Annual Groundwater Monitoring Report (GWMR) associated with the Wyeth Holdings Corporation (Former American Cyanamid) site, located in Bridgewater Township, New Jersey. Groundwater monitoring is performed in accordance with the 1988 Administrative Consent Order (ACO) between the American Cyanamid Company (Cyanamid) and the New Jersey Department of Environmental Protection (NJDEP), as amended in 1994. The Bridgewater property comprising the Superfund Site formerly owned and operated by American Cyanamid is now owned by Wyeth Holdings Corporation, a subsidiary of Wyeth. Pfizer acquired Wyeth, the parent company of Wyeth Holdings Corporation, in October 2009. Therefore the legal entity directly responsible for compliance with the Administrative Consent Order executed by American Cyanamid Corporation is Wyeth Holdings Corporation, a whollyowned subsidiary of Pfizer.

Should you have any questions or comments on the documents provided herewith, please feel free to contact me at 732-225-7380 extension 220.

Very truly yours, O'BRIEN & GERE ENGINEERS, INC.

Angelo J. Caracciolo, III Senior Project Manager

cc: Mr. Marc Romannel, NJDEP

Mr. Clifford Ng, USEPA

Mr. Russ Downey, Pfizer Mr. Vince D'Aco, Quantum

Ms. Maureen Hoke, O'Brien & Gere

TABLE OF CONTENTS

1. Introduction	
1.1. Background	1
1.2. Objectives	4
1.3. Report Organization	4
2. Site Hydrogeology	5
3. Site-Wide Semi-Annual Monitoring	7
3.1. Overburden Water Level Measurements	
3.1.1. Impoundment 3, 4, and 5	7
3.1.2 Impoundment 14	7
3.1.3 Group II Impoundment	7
3.1.4 Lagoon 6 and 7 and Impoundment 19 and 24	8
3.1.5 Impoundments 1 and 2	
3.2. Bedrock Water Level Measurements	8
3.2.1. Production Wells	9
3.2.2. Perimeter Wells	9
3.2.3. Main Plant	9
3.3. Overburden Groundwater Quality	9
3.3.1. Impoundments 1 & 2 Groundwater Quality	10
3.4. Bedrock Groundwater Quality	
4. Impound 8 Semi-Annual Monitoring	13
4.1. Overburden Groundwater and Impound 8 Leachate	13
4.1.1. Groundwater Elevation Measurement	13
4.2. Shallow Bedrock Monitoring	13
4.2.1. Groundwater Elevations	14
4.2.2. Impound 8 Groundwater Sampling and Analysis	14
4.2.3. Impound 8 Statistical Analysis	15
4.2.4. Lagoon 9A Sampling and Analysis	16

List of Tables

Tables Located within Text

1-1 Site-wide semi-annual monitoring requirements summary

Tables Located at the end of Report

- 2-1 Reference Summary
- 3-1 Site Production Well Pumping Information
- 3-2 Site Production Well Historical Pumping Information
- 3-3 Overburden Groundwater Elevations April 25 & 30, 2011
- 3-4 Bedrock Water Elevations April 25, 2011
- 3-5 Groundwater Analytical Results 8260 Volatile Organic Compound Data 2011 First Half Site-Wide Wells
- 3-6 Groundwater Analytical Results –8270 Semi Volatile Organic Compound Data 2011 First Half Site Wide Wells
- 3-7 Groundwater Analytical Results Metals Data 2011 First Half Site Wide Wells
- 3-8 Groundwater Analytical Results Other Data 2011 First Half Site Wide Wells
- 4-1 Impound 8 Overburden and Shallow Bedrock Groundwater Elevations April 25, 2011
- 4-2 Groundwater Analytical Results –8260 Volatile Organic Compound Data 2011 First Half Impound 8 Wells
- 4-3 Groundwater Analytical Results 8270 Semi Volatile Organic Compound Data 2011 First Half Impound 8 Wells
- 4-4 Groundwater Analytical Results Metals Data 2011 First Half Impound 8 Wells
- 4-5 Groundwater Analytical Results Other Data 2011 First Half Impound 8 Wells

List of Figures

- 3-1 Overburden monitoring well location plan
- 3-2 Bedrock well location map
- 3-3 Main Plant overburden water table map (April 25 & 30, 2011)
- 3-4 Bedrock groundwater contour map (April 25, 2011)
- 4-1 Impound 8 monitoring well location plan
- 4-2 Impound 8 overburden groundwater elevation plan (April 25, 2011)
- 4-3 Impound 8 shallow bedrock well groundwater elevation map (April 25, 2011)

List of Appendices

- A Procedures
- B Field sampling logs
- C Trend graphs
- D Data validation review
- E Impound 8 Leachate Monitoring Data
- F Groundwater velocity calculations
- G Description of statistical method
- H Statistical analysis

1. Introduction

This report presents the results of the First Half 2011 semi-annual groundwater monitoring program at the Site (a.k.a. American Cyanamid Superfund Site) in Bridgewater, New Jersey. The monitoring program includes site-wide groundwater pumping and monitoring, as well as the groundwater monitoring requirements for the Impound 8 Resource Conservation and Recovery Act (RCRA) Facility. This report was prepared in accordance with the Administrative Consent Order (ACO) between the American Cyanamid Company (Cyanamid) and the New Jersey Department of Environmental Protection (NJDEP), as amended in May 1994 (ACO Amendment). Pfizer Inc acquired Wyeth, the parent company of Wyeth Holdings Corporation, in October 2009. American Home Products (AHP) changed its name to Wyeth in 2002. The Bridgewater property comprising the Superfund Site formerly owned and operated by American Cyanamid is now owned by Wyeth Holdings Corporation, a subsidiary of Wyeth. Therefore the legal entity directly responsible for compliance with the Administrative Consent Order executed by American Cyanamid Corporation is Wyeth Holdings Corporation, a wholly-owned subsidiary of Pfizer Inc.

1.1. Background

In 1982, American Cyanamid began monitoring the site-wide groundwater control system at the facility. The monitoring program was conducted in accordance with the requirements of the 1982 ACO between American Cyanamid and the NJDEP.

The NJDEP issued a final New Jersey Pollutant Discharge Elimination System-Discharge to Ground Water (NJPDES-DGW) Permit # 0002313 for the site on September 30, 1987. The monitoring requirements were increased for this permit by adding analyses and monitoring wells to the site-wide program. In 1988, the NJDEP modified the NJPDES-DGW # 0002313 to include the Impound 8 Facility monitoring requirements.

The Impound 8 Facility program consists of the construction of a permitted RCRA waste management facility for the closure of several on-site lagoons and impoundments. As part of the program, the contents of remaining on-site impoundments may be treated and consolidated in the Impound 8 Facility. This facility includes the areas of former Lagoons 8 and 9. Lagoon 9A has been closed and is incorporated into the groundwater monitoring program at Impound 8. The monitoring program details were presented in the Impound 8 Facility Design Report (BB&L, March 1988), the Impound 8 Facility Ground Water Detection Monitoring Program (GWDMP) Work Plan (BB&L, December 1986, Revised December 1987 and March 1988), and the Implementation Plan (BB&L, March 1988) as part of the RCRA Part B Operating Permit.

In May 1994, an amendment to the ACO (ACO Amendment) between American Cyanamid and the NJDEP was executed. The ACO Amendment incorporates and supersedes the site-wide and Impound 8 groundwater pumping and monitoring requirements (NJPDES-DGW Permit) referred to previously.

In September 1997, AHP requested modifications to the site-wide groundwater monitoring requirements. The modifications were approved by the NJDEP in correspondence dated September 30, 1997. The following table and bullets summarize the currently approved monitoring program:

In July of 1996, a Record of Decision (ROD) was issued by the NJDEP for the Group II Impoundments. Group II includes Impoundments 15, 16, 17, and 18. This ROD included requirements for development

and implementation of an overburden groundwater monitoring program. The program was developed and agreed upon as outlined in correspondence to the NJDEP dated March 18, 1997.

On October 22, 2008, in a letter correspondence from NJDEP, reporting requirements were reduced from quarterly to semi-annually. In December 2008, Wyeth requested further modifications to the site-wide groundwater monitoring requirements. The requested modification, reduce sampling to semi-annual sampling, was approved by the NJDEP by e-mail correspondence dated December 30, 2008. Sampling events are now scheduled for April and October each year. The monitoring requirements are summarized in Table 1-1.

Table 1-1 Site-wide semi-annual monitoring summary.

Required Monitoring					
Monitor Wells/Points	Analyses				
Production wells (PW-2 and PW-3)	Target Compound List (TCL) Volatile Organic Compounds (VOCs) TCL Semi-volatile Organic Compounds (SVOCs), Arsenic				
	Extract at least 650,000 gallons of groundwater per day				
Perimeter bedrock wells (SS, TT, WW, XX, YY, ZZ)	TCL VOCs Arsenic (wells SS, TT and YY only)				
Impoundment 3, 4 and 5 area overburden wells (28R and MW-2)	TCL VOCs TCL SVOCs Arsenic, cadmium Chlorides (MW-2 only)				
Impoundment 14 area overburden wells (19R, 21R and O-R)	TCL VOCs TCL SVOCs (19R only)				
Impoundment 17 and 18 (AAA, CCC-R, EEE-R, III, KKK) Note: Wells AAA, CCC-R, EEE-R requirements met under Group II monitoring	TCL VOCs TCL SVOCs Metals Chlorides Radiologicals (CCC-R, EEE- R, and KKK only)				
Group II overburden wells (AAA, CCC-R, EEE-R, 16MW-2) Note: 16MW-2 analyzed for metals only	TCL VOCs TCL SVOCs Metals Cyanide and phenols				
Lagoon 6 and 7 and Impoundment 19 and 24 area overburden wells (32-R, 34-R, 38-R, 42-R and TFP- 94-1R) Note: 32-R analyzed for VOCs only.	VOCs TCL SVOCs Arsenic Cadmium, chromium, chlorides (38R only)				
Impoundment 8 wells (RCRA D-1 through RCRA D-15)	TCL VOCs, Total Dissolved Solids (TDS), Total Organic Carbon (TOC), Total Organic Halides (TOX), pH, specific conductance TCL SVOCs, Target Analyte List (TAL) Metals Monthly monitoring of leachate in the detection system with semi-				

	Required Monitoring							
Monitor Wells/Points	Monitor Wells/Points Analyses							
annual reporting Calculation of the shallow bedrock groundwater flow rate beneath the Impound 8 facility Statistical analysis of specific shallow bedrock groundwater quality parameters between upgradient and downgradient wells								
Lagoon 9A area wells (RCRA D-12 through RCRA D-15)	Comparison of shallow bedrock groundwater quality in upgradient wells to downgradient wells in the Lagoon 9A area to determine the effectiveness of the Lagoon 9A closure.							
All wells and staff gauges	Water level measurements Groundwater contour maps Comparison of the groundwater quality to the NJDEP Groundwater Quality Standards							
	Voluntary Monitoring							
Impoundment 1 & 2 area overburden wells (PZ-12-1, PZ-12-2, PZ-12-3, PZ-12-4, PZ-12-5, PZ-12-6, 01-MW-1, 01-MW-2, 01-MW-3, FLOD-W1S, FLOD-W2S	TCL VOCs TCL SVOCs Metals							
Main Plant area overburden wells (MW-1A and MW-22R)	TCL VOCs TCL SVOCs Metals Chlorides, Cyanide and phenols							
Impoundments 1 & 2 area bedrock well (FLOD-W2BS)	TCL VOCs TCL SVOCs Metals							
Source: O'Brien & Gere								

In July of 1996, a ROD was issued by the NJDEP for the Hill Property portion of the site. The ROD includes provisions for a Classification Exception Area (CEA) covering the groundwater beneath the Hill Property. This groundwater was monitored by bedrock wells PW-16, PW-17, PW-18, and perimeter bedrock well UU. Low levels of some organic compounds were observed in these wells at the time of the ROD CEA.

The Hill Property monitoring requirements were modified as detailed in the AHP correspondence dated January 8, 1998 and approved by the NJDEP on February 18, 1998. The modifications include the elimination of Hill Property wells PW-17, PW-18, well UU, and well MJ from the site-wide groundwater monitoring program. Groundwater elevations will continue to be measured in well MJ to provide a data point in this vicinity. Groundwater elevations were measured in well MJ until the First quarter 2008 monitoring event. Beginning with the Second quarter 2008 monitoring event measurements were discontinued due to the continued flooding of the well vault and modifications made by the owner that prevented access.

Discontinuation of monitoring of well PW-16 was approved by NJDEP in correspondence dated September 8, 2004, based on VOC results being observed below NJDEP Ground Water Quality Standards (GWQS) for two consecutive events (fourth quarter 2003 and Second quarter 2004). PW-16 continues to be monitored for groundwater elevation.

By letter dated March 17, 2009, NJDEP informed Wyeth Holdings Corporation that it was transferring oversight and regulatory lead of the Site to USEPA and would hold in abeyance the requirements of the NJDEP ACOs, with limited possible exceptions, as long as Respondent implemented the Site investigation and cleanup under USEPA oversight.

As part of the remedial design activities for the anticipated Site-Wide Groundwater Remedy, monitoring of the groundwater in the vicinity of Impoundments 1 & 2 was initiated in the Second quarter 2010. This groundwater monitoring consisted of the collection of groundwater samples, from existing monitoring wells, and the monitoring of groundwater elevations. This monitoring will continue with the semi-annual monitoring until such time that the monitoring program is redefined. Impoundments 1&2 monitoring is included in Table 1-1 above.

1.2. Objectives

This report has been developed to document that the following objectives have been met:

- complete the requirements of the ACO Amendment
- monitor the groundwater elevation and/or groundwater quality of the following areas:
 - Perimeter wells
 - Production wells
 - Hill property well
 - Main Plant area
 - Impoundment 3, 4, and 5 areas
 - Impoundment 14 area
 - Group II Impoundment area
 - Lagoons 6 and 7, and Impoundment 19 and 24 areas
 - Impoundments 1 and 2
- monitor the Impound 8 groundwater well network to gauge the effectiveness of the Impound 8 interceptor trench and cut-off wall
- maintain the Impound 8 shallow bedrock groundwater monitoring well network to detect potential releases from the Impound 8 Facility

1.3. Report Organization

This report presents the field and laboratory data compiled to fulfill the requirements of the ACO Amendment for the First Half 2011 sampling event. A description of the remaining sections of this report is provided below:

- Section 2: Site geology and hydrogeology provides background information and a discussion of the ongoing site wide groundwater extraction (pumping) program, and provides information specific to the Impound 8 facility.
- Section 3: Site-wide semi-annual monitoring provides groundwater flow and quality information for overburden groundwater in the vicinity of on-site impoundments and main plant, and bedrock groundwater in the perimeter monitoring wells and production wells.

Section 4: Impound 8 semi-annual monitoring - provides a discussion of the overburden, leachate, and the shallow bedrock monitoring activities.

2. Site Hydrogeology

There have been a number of groundwater reports developed based upon site research and investigations. A limited listing of relevant reports is provided as Table 2-1. Select information from these studies, and past groundwater monitoring reports, is briefly discussed in the following sections. Further discussion regarding hydrogeology at the site can be found in the Remedial Investigation Report (RIR) for Ground Water (HydroQual, 2006) and the Supplemental (RIR) for Ground Water (HydroQual, 2007), approved by NJDEP and the United States Environmental Protection Agency (USEPA).

The horizontal component of groundwater flow within the overburden deposits is essentially southward toward the Raritan River. Based on Camp Dresser, & McKee (CDM) modeling of the site in 1985 and recent vertical gradient data from some of the multi-level bedrock wells, overburden groundwater in the main plant area tends to flow downward into the underlying bedrock. Pumping of the production wells reduces the piezometric head in the bedrock and induces groundwater flow from the overlying overburden materials toward the production wells. South of a line paralleling the Lehigh-Reading Railroad tracks, the bedrock pumping does not appear to influence overburden groundwater and flow is generally south toward the Raritan River.

Groundwater flow within the Passaic Formation is predominantly a function of Secondary permeability (flow through joints and fractures within the bedrock). Packer test data obtained by CDM (1985 and 1992) indicate two extensive zones of joints and fractures that correlate with the bedding plane jointing and are further categorized as the highly and moderately transmissive zones, separated by zones of more competent bedrock (lower hydraulic conductivity). These zones supply the production wells with their high yield of groundwater and are a principal pathway for groundwater contaminant transport at the site. A third zone (SS conductive zone) was identified by CDM (1985) subcropping south of the Raritan River. The SS conductive zone is not hydraulically connected to the transmissive zones within the plant, and is not influenced by pumping of the production wells. A subvertical fracture trending northwest through the main plant was identified by CDM (1992) in production test wells TW-2 and TW-3 which are located in the main plant and correlates with the near vertical joint pattern discussed in Section 2.2. The results of a 72-hour pump test performed in test well TW-2 showed that the subvertical fracture zone is hydraulically connected to the highly and moderately transmissive zones identified by CDM in 1985. TW-2 and TW-3 have since been designated as PW-2 and PW-3, and have been pumping as replacement production wells since March 23, 1994.

As part of the production well startup, monitoring of the replacement wells PW-2 and PW-3 for a period of 30 days showed improved hydraulic containment in the main plant and portions of the impoundment areas. This is described in the "Final Summary Report, Start-up of Production Wells PW-2 and PW-3" dated August 1994 (CDM). Further, horizontal hydraulic gradients between the main plant and the former production wells on the Hill Property have been reversed, with groundwater flow now being toward the main plant from the former production wells.

In the southern portion of the site (south of the Lehigh Valley Railroad tracks), the major controlling feature is the Raritan River which acts as a regional groundwater discharge zone. Areas indicative of discharge to the Raritan River are generally characterized by a natural upward hydraulic gradient as observed in the multiport well SS (HydroQual, 2007).

The zone of influence created by the production well pumping encompasses the main plant portion of the site. Groundwater elevation contour mapping (Figure 3-4) has shown an east-west elongation in the zone of influence, caused by the orientation of the highly and moderately transmissive zones, the apparent termination of the subvertical fracture zone within the main plant, and the distribution of monitoring wells. The portion of the site south of the Lehigh-Reading Railroad tracks, however, was identified as an area where production well influence is limited (CDM 1985 and HydroQual, 2007).

In response to the 12 May 2011 USEPA comments on the hydrogeological conceptual site model (CSM) described in the Site-wide Feasibility Study, an updated hydrogeological CSM will be described and included in the revised Site-wide FS to be submitted to USEPA and NJDEP in August 2011. Therefore, interpretation of some of the figures in this report (e.g. overburden groundwater elevation plan and water table map) are subject to change.

3. Site-Wide Semi-Annual Monitoring

Overburden groundwater elevations and groundwater quality are monitored in areas of the site as specified by the ACO Amendment and the ROD for the Group II Impoundments. The locations of the site-wide overburden monitoring wells are shown on Figure 3-1.

The bedrock system, as specified by the ACO, is currently monitored by 19 bedrock wells, as shown on Figure 3-2.

On March 23, 1994, groundwater pumping for production was switched from former production wells PW-16, PW-17, and PW-18 to wells PW-2 and PW-3 under a program approved by the NJDEP.

The ACO requires groundwater to be pumped at a minimum weekly average of 650,000 gallons per day. The site production well pumping information for the First Half 2011 is provided as Table 3-1. Pumping volumes from the Second quarter 1988 through the First Half 2011 are provided on Table 3-2. The volume of water treated during the First Half 2011 was 119,941,330 gallons, and the total volume of groundwater treated since July 1988 is 5,573,000,000 gallons. The volume of water treated during the First Half 2011 was provided by Woodard and Curran, which conducts the Operation and Maintenance at the site.

3.1. Overburden Water Level Measurements

Site-wide overburden groundwater elevation measurements were obtained on April 25 and 30, 2011. The elevation data and changes in elevations from April 25 and 30, 2011 to the last report are presented in Table 3-3.

An overburden groundwater elevation contour map has been prepared for the Main Plant area and is provided as Figure 3-3. The following provides a description of the groundwater elevation data for each of the four areas required to be monitored by the ACO.

3.1.1. Impoundment 3, 4, and 5

Wells 28-R, MW-2, MW-3, MW-5, MW-7, and MW-9 are monitored for the Impoundment 3, 4 and 5 areas (Figure 3-3). The groundwater flow direction in this area for the First Half 2011 monitoring event is generally to the south with flow potentials converging in the vicinity of well MW-2. This groundwater pattern is similar to historical flow patterns. The change in groundwater elevations in this area is consistent with previous data.

3.1.2 Impoundment 14

The groundwater flow direction in the area of Impoundment 14, as monitored by wells 19R, 21R, and O-R, indicates a southerly hydraulic gradient away from Cuckolds Brook, towards the center of the plant, which is consistent with previous findings (Figure 3-3). The change in groundwater elevations is consistent with previous data.

3.1.3 Group II Impoundment

The groundwater flow direction in the area of the Group II Impoundments, monitored by wells AAA, CCC-R, EEE-R, and 16MW-2, is generally to the south across the Group II Impoundments (Figure 3-3). The change in groundwater elevations is consistent with previous data.

3.1.4 Lagoon 6 and 7 and Impoundment 19 and 24

Elevation changes for the Lagoon 6 and 7 and Impoundments 19 and 24 areas are consistent with historic data. Monitoring well 32-R, located in the northwest portion of Lagoon 7, was obstructed and not gauged during this monitoring event. The obstruction was removed and the well will be gauged for future monitoring events. The current groundwater elevations in wells 34-R, 38-R, 42-R, and TFP-94-1R, indicate mounding beneath Lagoon 7 with a portion of groundwater flow directed to the southwest toward the Raritan River, and a portion directed to the northeast toward Cuckold's Brook, which is similar to historic groundwater flow patterns (Figure 3-3).

3.1.5 Impoundments 1 and 2

The groundwater elevations in the Impoundments 1 and 2 area are monitored by piezometers PZ-12-1, PZ-12-2, PZ-12-3, PZ-12-4, PZ-12-5 and wells 01-MW-01, 01-MW-02, 01-MW-03, FLOD-W1S, and FLOD-W2S. Groundwater flow is generally to the south (Figure 3-3), which is similar to the previous groundwater flow pattern. groundwater

Groundwater elevations and flow, evaluated during the Second Half 2010 monitoring event, Remedial Investigation (Hydroqual, 2006) and Supplemental Remedial Investigation (Hydroqual, 2007), also indicate a groundwater flow generally to the south and groundwater elevations are comparable to this First Half 2011 semi-annual groundwater monitoring event.

Additional sampling and associated data will be collected in the vicinity of Impoundments 1 and 2 and will be incorporated in to the Second Half 2011 Monitoring Program as a result of the Settlement Agreement and Order on Consent for Removal Action executed between WHC and USEPA on 19 July 2011.

3.2. Bedrock Water Level Measurements

Bedrock water level measurements obtained on April 25, 2011 are presented in Table 3-4. Between the third quarter 2005, and fourth quarter 2005 bedrock wells SS, TT, WW, XX, YY, ZZ, EEEE, FFFF, and GGGG were retrofitted with FLUTe® liners with discrete monitoring ports. The FLUTe® system is composed of several ports that target discrete flow zones. FLUTe® procedures are provided in Appendix A. Table 3-4 also provides a summary of the monitoring port elevations and their associated groundwater elevations. Prior to the FLUTe® liner installations, historical measurements were representative of average groundwater elevations of the entire open interval in each well. Since the groundwater elevations obtained from the bedrock wells in which FLUTe® liners were installed are representative of discrete flow zones, comparison of these elevations with historic elevations prior to FLUTe® liner installation is not appropriate. Groundwater elevation measurements from each port have been compared to previous FLUTe® measurements. For consistency, the remaining bedrock wells (AAAA, BBBB, CCCC, DDDD, IIII, and JJJJ) without FLUTe® liners have been compared to historical measurements. Groundwater elevations and the changes in elevations from the previous monitoring event are presented in Table 3-4.

Flowing artesian conditions were observed at monitoring points IIII-D and JJJJ-D during the monitoring events from the fourth quarter 2006 through the third quarter 2007, and from the First quarter 2008 through the First Half 2010. Starting with the Second quarter 2008, wells IIII-D and JJJJ-D were temporarily modified by attaching a temporary casing extension to each of the wells prior to water depth gauging. Each temporary casing used is permanently designated to the well in order to preserve accurate measurements. The new top of casing elevation is calculated by adding the length of temporary casing to the surveyed elevation.

A bedrock groundwater contour map, prepared using groundwater elevations from wells PW-2, PW-3, PW-16, SS (Port 1), TT (Port1), WW (Port 1), XX (Port 1), YY (Port 3), ZZ (Port 1), AAAA-S, BBBB-

S, CCCC-S, DDDD-O, EEEE (Port 4), FFFF (Port 3), GGGG (Port 2), IIII-S, and JJJJ-O, is provided as Figure 3-4.

Wells and FLUTe® ports used to produce the contour map were selected to represent the upper moderately conductive zone. Wells that did not have screens that intersected the upper moderately conductive zone including SS (Port 1), WW (Port 1), XX (Port 1), ZZ (Port 1), AAAA-S, CCCC-S, GGGG (Port 2), IIII-S, and JJJJ-O were selected based on screen depth that most closely correlated in depth to adjacent wells that had a screen that did intersect the zone.

3.2.1. Production Wells

Groundwater elevations and the elevation changes in the production wells (PW-2 and PW-3) from the previous monitoring event are presented in Table 3-4. The production well zone of influence, based on the April 25, 2011 groundwater elevations appears to be similar to the zone of influence observed at these locations during previous events (Figure 3-4). Groundwater elevation from production well PW-3 was not measured during the First Half 2011 monitoring event due to well site accessibility.

3.2.2. Perimeter Wells

Groundwater elevations and the elevation changes in the perimeter bedrock wells (SS, TT, WW, XX, YY, and ZZ) from the previous monitoring event are presented in Table 3-4.

3.2.3. Main Plant

Groundwater elevations and the elevation changes for the Main Plant bedrock wells (AAAA, BBBB, CCCC, DDDD, EEEE, FFFF, GGGG, IIII, and JJJJ) from the previous monitoring event are presented in Table 3-4. The vertical gradients noted in the Main Plant wells are the result of varying degrees of hydraulic communication between the transmissive zones at various well locations due to pumping of the production wells. Vertical gradients noted at wells IIII and JJJJ, located within the Raritan River floodplain, suggest groundwater discharge to the Raritan River from the deep bedrock.

As mention in Section 2, Site hydrogeology, an updated hydrogeological CSM will be described and included in the revised Site-wide FS to be submitted to USEPA and NJDEP in August 2011. Therefore, certain hydrogeologic interpretations presented in this report are subject to change.

3.3. Overburden Groundwater Quality

In a letter dated October 11, 2005, NJDEP accepted the use of passive diffusion bags (PDBs) for volatile organic compound (VOC) sample collection from the overburden monitoring wells sampled as part of the monitoring program. Based on this acceptance, PDBs were installed on April 7, 2011 in the overburden monitoring wells to be sampled during the First Half 2011 monitoring event. Installation and sampling procedures for PDBs are provided in Appendix A. A PDB specification summary table and checklists for the submission of sampling data for PDBs are provided in Appendix B.

Accutest Laboratories, Inc. of Dayton, New Jersey (Accutest) collected groundwater samples between April 27 and May 13, 2011from Impoundment 3, 4, and 5, Impoundment 14, Group II impoundment, and Lagoon 6 and 7 and Impoundment 19 and 24 and between May 18 and 19, 2011 for Impoundments 1 & 2. Well 32-R was sampled on May 13, 2011 after an obstruction was cleared. Accutest (NJ Certification No. 12129) also performed laboratory analysis of the groundwater samples.

Measurements of specific conductance, pH, temperature, dissolved oxygen, and turbidity were recorded in the field. These data are presented in Appendix B. Trend graphs for constituents historically and

currently detected in samples during monitoring at the site are included in Appendix C. The groundwater analytical data is provided in Tables 3-5, 3-6, 3-7, and 3-8. The data were reviewed in accordance with NJDEP procedures. These data were evaluated using the NJDEP Electronic Data Systems Application Checker program and no errors were evident. A data validation review is provided in Appendix D.

The concentrations of chlorobenzene and toluene in the upper portion of monitoring well MW-2, which decreased to their lowest concentration during the Second Half 2010, are now detected at their lowest concentrations. The concentration of 1,2,4-Trichlorobenzene in well 38-R decreased below the GWQS for the First time since 2003. The concentration of chlorobenzene in monitoring well 42-R, detected at the highest concentration during the Second Half 2010, decreased within the range of historic fluctuation. In monitoring well 34-R, 1,2,4-tricholorobenzene was not detected for the third time since the First Half 2010, consistent with a historically decreasing trend. The concentration of bis(2-Ethylhexyl)Phthalate and aniline in monitoring wells 19R and 42R, respectively, were detected at their highest concentrations for the First time since sampling began in 1996. The concentration of 2-Methylnaphthalene in monitoring well MW-2 was detected at its highest concentration for the First time since 1998.

Monitoring wells MW-1A and MW-22R were sampled for VOCs, SVOCs, and metals for the First time during the First Half 2011. Data results indicate that benzene was detected at MW-1A and MW-22R at concentrations above GWQS and chlorobenzene was detected at MW-1A at concentrations above GWQS. The concentration of aniline was detected above GWQS in MW-1A and MW-22R. The concentrations of 2-Methylphenol, 3-Nitroaniline, and 4-Chloroaniline were detected above GWQS in well MW-1A. Concentrations of arsenic, iron, and manganese were detected above GWQS at both MW-1A and MW-22R. Phenol was detected at concentrations above GWQS in well MW-1A.

The remaining VOC and SVOC concentrations in overburden groundwater collected during the First Half 2011 monitoring event are within their respective ranges of historic fluctuations.

The concentrations of magnesium in wells AAA was detected at the highest concentration since to date. The concentration of magnesium in monitoring well KKK decreased to the lowest concentration observed to date. The concentration of manganese in monitoring well KKK decreased to the lowest concentration for the First time since 1998. The concentrations of calcium in monitoring wells CCC-R and KKK decreased to their lowest concentrations to date. The remaining metals concentrations in overburden groundwater collected during the First Half 2011 monitoring event are within their respective ranges of historic fluctuation.

3.3.1. Impoundments 1 & 2 Groundwater Quality

During the First Half 2011 sampling event, eleven overburden monitoring wells and piezometers located at Impoundments 1 & 2 were sampled between May 18 and May 19, 2011. Each monitoring well and piezometer with a 10 ft screen (all wells except FLOD-W1S and FLOD-W2S) was sampled with two PDBs to evaluate the presence of stratification within wells. Overburden monitoring wells sampled included FLOD-W2S, FLOD-W1S, 01-MW-01, 01-MW-02, 01-MW-03, PZ-12-1, PZ-12-2, PZ-12-3, PZ-12-4, PZ-12-5, and PZ-12-6. Groundwater samples were analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals. The groundwater analytical data is provided in Tables 3-5, 3-6, and 3-7.

Accutest Laboratories, Inc. of Dayton, New Jersey (Accutest) collected the groundwater samples from the Impoundment 1 & 2. Accutest (NJ Certification No. 12129) also performed laboratory analysis of the groundwater samples. Accutest reported inconsistent compound lists for VOC analyses and analytical methods used to report 1,4-dioxane. These errors will be corrected for future monitoring events.

Groundwater sample results from the Impoundments 1 & 2 area during the First Half 2011 sampling event have been compared to groundwater samples collected during the Second Half 2010 sampling event and the approved Remedial Investigation (Hydroqual, 2006) and Supplemental Remedial Investigation (Hydroqual, 2007).

Benzene has been consistently detected above GWQS in each of the monitoring wells sampled during the Remedial and Supplemental Investigations and First Half 2011 sampling event, with the exception of the upper PDBs at PZ-12-1 and PZ-12-2 that were below the GWQS during the First Half 2011. Concentrations in these wells have not always exceeded GWQS. Toluene was detected above the GWQS in monitoring wells 01-MW-02, 01-MW-03, FLOD-W1S, and PZ-12-4, similar to historical results. 1,2-Dichorobenzene was detected in monitoring wells 01-MW-01, 01-MW-02, 01-MW-03, FLOD-W1S, and PZ-12-4 at concentrations above GWQS, consistent with historical results. Naphthalene and nitrobenzene in monitoring wells 01-MW-03, FLOD-W1S, and PZ-12-4 were detected at concentrations above GWQS, similar to historical results. Naphthalene and nitrobenzene in monitoring wells 01-MW-02, 01-MW-03, FLOD-W1S, and PZ-12-4 were detected at concentrations above GWQS, similar to historical results. Naphthalene and nitrobenzene in monitoring wells 01-MW-02, 01-MW-03, FLOD-W1S, and PZ-12-4 were detected at concentrations above NJGWQS during the First Half 2011 sampling event, similar with historical results.

Concentrations of aluminum, iron, and manganese were detected above GWQS in the majority of the monitoring wells sampled during the Remedial and Supplemental Investigations, Second Half 2010 and First Half 2011 sampling events. First Half 2011 results were similar to historical results.

Additional sampling and associated data will be collected in the vicinity of Impoundments 1 and 2 and will be incorporated in to the Second Half 2011 Monitoring Program as a result of the Settlement Agreement and Order on Consent for Removal Action executed between WHC and USEPA on 19 July 2011.

3.4. Bedrock Groundwater Quality

Bedrock groundwater quality was obtained between April 14 and May 19, 2011 and is presented below. As noted in section 3.2, bedrock wells SS, TT, WW, XX, YY, ZZ, EEEE, and FFFF, were retrofitted with FLUTe[®] liners with discrete monitoring ports for groundwater sampling. FLUTe[®] procedures are provided in Appendix A.

Accutest collected groundwater samples from the six perimeter bedrock monitoring wells, the active production wells, and a bedrock well in the Impoundment 1&2 floodplain. Accutest also performed laboratory analysis of the groundwater samples. Specific conductance, pH, turbidity, dissolved oxygen, and temperature measurements were recorded in the field and are presented on the field sampling logs in Appendix B. Trend graphs for constituents historically and currently detected in samples during monitoring at the site are included in Appendix C. The groundwater analytical data is provided in Tables 3-5, 3-6, 3-7, and 3-8. The data were reviewed in accordance with NJDEP procedures. These data were evaluated using the NJDEP Electronic Data Systems Application Checker program and no errors were evident. The data validation review is provided in Appendix D.

The concentration of vinyl chloride in well TT P1 was detected at the highest concentration to date, continuing an increasing trend observed since the Second Half 2009. The concentrations of tetrachloroethene and trichloroethene in monitoring well TT P2 decreased to the lowest concentrations observed to date. Benzene was detected in well PW-3 at the lowest concentration observed to date, continuing an overall decreasing trend. Bis(2-ethylhexyl)phthalate, detected in PW-3 slightly above the GWQS during the Second Half 2010, is now non-detect, which is consistent with historic results. The remaining VOC and SVOC concentrations in bedrock groundwater for the First Half 2011 monitoring event are within the range of historic fluctuations.

The concentration of arsenic in well SS P1 decreased to the lowest concentration for the Second time since the Second quarter 2008. The remaining metals concentrations are within the range of historic fluctuations and will continue to be closely monitored during future monitoring events.

4. Impound 8 Semi-Annual Monitoring

A total of fifteen shallow bedrock monitoring wells are sampled around the Impound 8 Facility to detect potential releases to groundwater. The monitoring program for the Impound 8 Facility is described in the NJDEP-approved GWDMP.

4.1. Overburden Groundwater and Impound 8 Leachate

4.1.1. Groundwater Elevation Measurement

Groundwater elevation measurements were obtained on April 25, 2011. The overburden groundwater measurements are used to evaluate the effectiveness of the groundwater interceptor trench and groundwater cut-off wall in minimizing overburden groundwater flow within Impound 8. The groundwater elevation data and elevation changes between April 25, 2011 and the previous monitoring event have been summarized and are provided on Table 4-1. Groundwater elevation changes were consistent with historic variations. An Impound 8 monitoring well location plan is provided as Figure 4-1.

Based on the April 25, 2011 groundwater elevation data, the monitoring wells that are hydraulically upgradient of the groundwater interceptor trench and groundwater cut-off wall include RCRA-S1, RCRA-S3, RCRA-S4, RCRA-S9, and RCRA-S11.

Monitoring wells that are hydraulically downgradient of the groundwater interceptor trench and groundwater cut-off wall include RCRA-S2, RCRA-S5, RCRA-S6, RCRA-S7, RCRA-S8, RCRA-S10, RCRA-S12, RCRA-S13R, RCRA-S14, and RCRA-S15. Consistent with previous monitoring data, wells RCRA-S5, and RCRA-S13R were dry. Wells RCRA-S2, RCRA-S6, RCRA-S7, RCRA-S8, RCRA-S10, RCRA-S12, RCRA-S14, and RCRA-S15 contained groundwater. The overburden wells downgradient of the interceptor trench and cut-off wall that typically contain measurable groundwater levels (RCRA-S7, RCRA-S9, RCRA-S14, and RCRA-S15) are located within an area that has a greater thickness of overburden due to a bedrock trough that runs from the northwest to the southeast along the southwest portion of Impound 8.

Due to the limited occurrence of groundwater in the overburden groundwater zone, a contour map has not been generated. However, Figure 4-2 depicts the water elevations observed during this First Half 2011 monitoring event. As evidenced by the consistently lower groundwater elevations in the wells hydraulically downgradient of the interceptor trench and cut-off wall, the system is effective in controlling overburden groundwater at Impound 8.

The Cell 1, Cell 2, Cell 3, and Cell 4 leachate detection and collection systems have been constructed, and are being monitored in accordance with the ACO. The actual rates are determined by weekly monitoring of a flow-totalizing meter installed on the leachate detection system piping. The data that have been collected during the First Half 2011 monitoring event are included in Appendix E. The Action Leakage Rate (ALR), as approved by the United States Environmental Protection Administration, is 21,302 gal per acre-day (gpad). Monitoring results from the First Half 2011 monitoring event do not exceed the current ALR.

4.2. Shallow Bedrock Monitoring

As detailed in the Impound 8 Work Plan, groundwater in the bedrock flows in a southwesterly direction under natural conditions. However, during the operation of a bedrock pumping well located approximately 300 ft to the northeast of the site, at Phillips Concrete Incorporated (formerly Mensing

Cement Company), a divergent flow pattern develops. While the usual groundwater flow direction is to the southwest, the influence of the pumping well has previously reversed the groundwater flow direction under the northern portion of Impound 8, resulting in a northeasterly flow direction during pumping conditions. To account for this divergent flow pattern, the GWDMP has defined two sets of downgradient wells to monitor flow: RCRA D-1 through RCRA D-4 (to monitor the northeast flow); and RCRA D-7 through RCRA D-11 (to monitor the southwest flow). Shallow bedrock wells RCRA-D5, RCRA-D6, RCRA-D14, and RCRA-D15 have been designated as upgradient. In reviewing data it is important to note what wells are inside and outside the groundwater cut-off wall. Monitoring wells and the containment wall are presented in Figure 4-1. A more detailed discussion of the bedrock hydrogeology and the divergent bedrock groundwater flow pattern can be found in the GWDMP.

Groundwater elevation measurements were obtained on April 25, 2011. Divergent flow was not evident based on the groundwater elevations recorded on April 25, 2011 as part of the First Half 2011 monitoring event.

In addition, the GWDMP provides a means to monitor potential impacts to groundwater from Impound 9A. The GWDMP has identified wells RCRA-D14 and RCRA-D15 as upgradient and wells RCRA-D12 and RCRA-D13 as downgradient with respect to Impound 9A. These wells provide a means of comparison between water quality before and after passing beneath Lagoon 9A.

4.2.1. Groundwater Elevations

Shallow bedrock groundwater elevation measurements obtained on April 25, 2011 are summarized on Table 4-1. A shallow bedrock groundwater elevation map has been provided as Figure 4-3. The First Half 2011 groundwater elevations indicate a southerly flow direction consistent with historic groundwater flow patterns (Figure 4-3).

Calculations of the estimated shallow bedrock groundwater flow velocity on April 25, 2011 are included in Appendix F.

4.2.2. Impound 8 Groundwater Sampling and Analysis

Groundwater sampling was performed between April 26 and April 28, 2011 at wells RCRA-D1 through RCRA-D15. The Impound 8 Facility shallow bedrock wells include a dedicated groundwater sampling system. The system is the "QED-Well Wizard" comprised of dedicated pump tubing and bladders in each well, with dedicated on-site pneumatic controllers. Field sampling logs are presented in Appendix B.

The analytical parameters for the samples included the following:

- TCL VOCs
- TCL SVOCs
- TAL Metals
- TDS
- TOC
- TOX.

Analytical results for the First Half 2011 groundwater monitoring event are provided in Tables 4-2 through 4-5. The data were reviewed in accordance with NJDEP procedures. Trend graphs for constituents historically and currently detected in samples during monitoring at the site are included in Appendix C. These data were evaluated using the NJDEP Electronic Data Systems Application Checker program and no errors were evident. A data validation review is provided in Appendix D.

Tetrachloroethene was detected in well RCRA-D10 at the lowest detected concentration observed to date. The concentration of trichloroethene in upgradient well RCRA-D15, detected at the highest concentration during the Second Half 2010, is now within the range of historic fluctuation. The remaining VOC and SVOC concentrations in the Impound 8 groundwater samples collected during the First Half 2011 monitoring event are consistent with previously detected results.

The concentrations of sodium and arsenic decreased from highest concentrations observed during the Second Half 2010 in monitoring wells RCRA-D6 and RCRA-D1, respectively The remaining metals concentrations in the Impound 8 wells are within the range of historic fluctuations. TOC in monitoring well RCRA-D6 decreased to the lowest concentration observed to date. TDS in monitoring well RCRA-D9 decreased to the lowest concentration observed to date. TDS in monitoring well RCRA-D12, detected at the highest concentration during the Second Half 2010, is now within the ranges of historic fluctuations. The remaining TDS, TOC, and TOX concentrations were within the range of historic fluctuations during the First Half 2011 monitoring event.

4.2.3. Impound 8 Statistical Analysis

In accordance with the ACO Amendment, statistical analyses are required to be performed comparing downgradient groundwater quality as monitored by wells RCRA-D1 through RCRA-D4 and RCRA-D7 through RCRA-D11, to upgradient groundwater quality as monitored by wells RCRA-D5, RCRA-D6, RCRA-D14, and RCRA-D15. It is noted that the groundwater elevations recorded on April 25, 2011 do not indicate a divergent groundwater flow pattern and the "upgradient/downgradient" well designations stated in the GWDMP may not be reflected based on the April 25, 2011 elevations. However, the designations specified in the GWDMP are maintained in this report since there remains potential for divergent flow due to the off-site pumping.

A set of stipulated parameters has been identified to determine if there is statistical significance between groundwater quality from the upgradient and downgradient shallow bedrock monitoring wells. The stipulated parameters are listed below:

- Benzene
- Chlorobenzene
- Chloroform
- Ethylbenzene
- Tetrachloroethene
- Toluene
- 1,1,1-Trichloroethane
- Trichloroethene
- pH
- TDS
- TOC
- TOX
- Specific Conductivity

The required statistical analysis is the Dunnett's Multiple Comparison T-test method. A description of this method is provided in Appendix G. The statistical evaluation of results can only be conducted if the downgradient monitoring wells have detectable concentrations of the parameters identified, and there is variance in the upgradient well concentrations.

Statistical analyses were performed for the following stipulated parameters: pH, specific conductivity, TOC, TDS, chloroform, tetrachloroethene, and trichloroethene. Statistical analyses were not performed

for TOX, benzene, chlorobenzene, ethylbenzene, 1,1,1-trichloroethane, or toluene as these parameters were not detected in the upgradient or downgradient monitoring wells.

Appendix H contains the statistical data. The calculated T-values were below the critical T-values of 5.61 for pH and 4.31 for the remaining parameters for which the statistical analyses were conducted, with the exception of TOC for well RCRA-D9, which exceeded the critical T-value of 4.31. TOC values for well RCRA-D9 will be closely monitored during future sampling events.

4.2.4. Lagoon 9A Sampling and Analysis

In accordance with the GWDMP for the Impound 8 Facility, and the ACO amendment, a qualitative comparison between upgradient and downgradient wells in the Lagoon 9A area is required and was completed. This analysis is designed to monitor the effectiveness of the closure and potential impacts to groundwater quality. Tables 4-2 through 4-5 provide a summary of the analytical results from the First Half 2011 monitoring event. Trend graphs for constituents historically and currently detected in samples during monitoring at the site are included in Appendix C.

The GWDMP has identified wells RCRA-D14 and RCRA-D15 as upgradient shallow bedrock monitoring wells in relation to Lagoon 9A. Shallow bedrock monitoring wells RCRA-D12 and RCRA-D13 were identified as downgradient of Lagoon 9A. Wells RCRA-D12 and RCRA-D13 were installed to evaluate potential impacts of Lagoon 9A, and were not intended for use in the Impound 8 upgradient evaluation. This arrangement allows comparisons between upgradient groundwater quality, relative to Impound 8, before and after groundwater passes beneath Lagoon 9A. Review of the April 25, 2011 shallow bedrock groundwater elevation data and map presented as Figure 4-3 indicates that well RCRA-D14 has a higher groundwater elevation compared to well RCRA-D13 and well RCRA-D15 has a higher groundwater elevation compared to well RCRA-D12. Therefore, wells RCRA-D14 and RCRA-D15 can be considered upgradient of Lagoon 9A at the time of the April 25, 2011 groundwater elevation measurements.

VOCs and SVOCs were not detected above GWQS in the upgradient or downgradient wells during the First Half 2011 monitoring event, with the exception of upgradient well RCRA-D15. Historically, a number of VOCs have consistently been detected above GWQS in this well. TDS was not detected above GWQS in the upgradient or downgradient wells during the First Half 2011 monitoring event, with the exception of downgradient well RCRA-D12. Metals, TOC, and TOX results for the First Half 2011 monitoring event were within the range of historic fluctuations.

SEMI-ANNUAL GROUNDWATER MON	TORING FIRST HALF 2011	TABLES
	Tal	bles

Pfizer Inc Bound Brook, New Jersey Site First Half 2011 Site Wide Groundwater Program

(Table by O'Brien & Gere Engineers Inc.)

		
Date	Author	Title/Item
1978	Geraghty & Miller	Study of Ground Water Conditions
1985	Camp, Dresser & McKee	Development of Ground Water Model
1988	Blasland, Bouck & Lee	Quarterly Monitoring Program
1988	Blasland, Bouck & Lee	Impound 8 Ground Water Detection Monitoring Work Plan
1988	Blasland, Bouck & Lee	Impound 8 Facility Final Design Report
1988	Blasland, Bouck & Lee	Impound 8 Facility Implementation Plan
1991	Camp, Dresser & McKee	Hydro-geologic Test Plan for Production Wells
1992	Camp, Dresser & McKee	Relocation of Production Wells, Pump Test Report
1994	Camp, Dresser & McKee	Final Summary Report, Startup of Production wells PW-2 and PW-3
1995	Camp, Dresser & McKee	First Quarter 1995, ACO Amendment Ground Water Monitoring Program
1998	O'Brien &Gere Engineers, Inc.	Impound 8 Facility Ground Water Monitoring Fourth Quarter 1997
1998	O'Brien &Gere Engineers, Inc.	Impound 8 Facility Ground Water Monitoring First Quarter 1998
1998	O'Brien &Gere Engineers, Inc.	Impound 8 Facility Ground Water Monitoring Second Quarter 1998
1998	O'Brien &Gere Engineers, Inc.	Impound 8 Facility Ground Water Monitoring Third Quarter 1998
1998	O'Brien &Gere Engineers, Inc.	Site-Wide Ground Water Monitoring Fourth Quarter 1997
1998	O'Brien &Gere Engineers, Inc.	Site-Wide Ground Water Monitoring First Quarter 1998
1998	O'Brien &Gere Engineers, Inc.	Site-Wide Ground Water Monitoring Second Quarter 1998
1998	O'Brien &Gere Engineers, Inc.	Site-Wide Ground Water Monitoring Third Quarter 1998
998-2008	O'Brien &Gere Engineers, Inc.	Site-Wide Ground Water Monitoring Fourth Quarter 1998 - Fourth Quarter 20
2009	O'Brien &Gere Engineers, Inc.	First Semi-Annual 2009 - Second Semi-Annual 2009
2010	O'Brien &Gere Engineers, Inc.	First Semi-Annual 2010 - Second Semi-Annual 2010
2010	O'Brien &Gere Engineers, Inc.	First Semi-Annual 2010 - Second Semi-Annual 2010

Pfizer Inc Bound Brook, New Jersey Site First Half 2011 Site Wide Groundwater Program

 Table 3-1.
 Site Production Well Pumping Information

Table 3-1.	Site Product	tion Well Pumpii	on		
Period E	nding	Но	urs	Gallons	Notes
		PW2	PW3	(Weekly Average)	
1/7/2011		0	168	661,000	
1/14/2011		36	132	662,000	
1/21/2011		168	0	659,000	
1/28/2011		168	0	661,000	
2/4/2011		168	0	661,000	
2/11/2011		132	36	663,000	
2/18/2011		0	168	662,000	
2/25/2011		0	168	663,000	
3/4/2011		0	168	658,000	
3/11/2011		36	132	660,000	
3/18/2011		168	0	665,000	
3/25/2010		168	0	661,000	
4/1/2011		168	0	662,000	
4/8/2011		168	0	662,000	
4/8/2011		132	36	ŕ	
				666,000	
4/22/2011		0	168	668,000	
4/29/2010		0	168	665,000	
5/6/2011		0	168	662,000	
5/13/2011		0	168	672,000	
5/20/2011		0	168	662,000	
5/27/2011		0	168	664,000	
6/3/2011		0	168	663,000	
6/10/2011		0	168	666,000	
6/17/2011		0	168	671,000	
6/24/2011		0	168	661,000	

Notes:

Pfizer Inc Bound Brook, New Jersey First Half 2011 Site-Wide Groundwater Program

 Table 3-2.
 Site Production Well Historical Pumping Information

Report Date	Report Interval	Total Production Well Volume		Running Total Volume
July-1988	2Q88		*	24,050,000
October-1988	3Q88	59,800,000	*	83,850,000
January-1989	4Q88	59,800,000	*	143,650,000
April-1989	1Q89	58,500,000	*	202,150,000
July-1989	2Q89		*	261,300,000
October-1989	3Q89		*	321,100,000
January-1990	4Q89	59,800,000	*	380,900,000
April-1990	1Q90	58,500,000	*	439,400,000
July-1990	2Q90	59,150,000	*	498,550,000
October-1990	3Q90	59,800,000	*	558,350,000
January-1991	4Q90	59,800,000	*	618,150,000
April-1991	1Q91	58,500,000	*	676,650,000
July-1991	2Q91	59,150,000	*	735,800,000
October-1991	3Q91	59,800,000	*	795,600,000
January-1992	4Q91	59,800,000	*	855,400,000
April-1992	1Q92	59,150,000	*	914,550,000
July-1992	2Q92	59,150,000	*	973,700,000
October-1992	3Q92	59,800,000	*	1,033,500,000
January-1993	4Q92	59,800,000	*	1,093,300,000
April-1993	1Q93	58,500,000	*	1,151,800,000
July-1993	2Q93	59,150,000	*	1,210,950,000
October-1993	3Q93	59,800,000	*	1,270,750,000
January-1994	4Q93	59,800,000	*	1,330,550,000
March-1994	1Q94	58,500,000	*	1,389,050,000
July-1994	2Q94	59,150,000	*	1,448,200,000
September-1994	3Q94	59,800,000	*	1,508,000,000
January-1995	4Q94	59,800,000	*	1,567,800,000
April-1995	1Q95	58,500,000	*	1,626,300,000
July-1995	2Q95	60,200,000		1,686,500,000
October-1995	3Q95	59,800,000	*	1,746,300,000
March-1996	4Q95	63,100,000		1,809,400,000
April-1996	1Q96	63,100,000		1,872,500,000
July-1996	2Q96	61,400,000		1,933,900,000
October-1996	3Q96	61,800,000		1,995,700,000
January-1997	4Q96	61,900,000		2,057,600,000
April-1997	1Q97	62,600,000		2,120,200,000
July-1997	2Q97	62,700,000		2,182,900,000
October-1997	3Q97	62,600,000	4	2,245,500,000
January-1998	4Q97	62,900,000	4	2,308,400,000
April-1998	1Q98	61,300,000	4	2,369,700,000
July-1998	2Q98	61,900,000	4	2,431,600,000
October-1998	3Q98	62,700,000	4	2,494,300,000
January-1999	4Q98	62,600,000		2,556,900,000
April-1999	1Q99	58,500,000	*	2,615,400,000

Pfizer Inc Bound Brook, New Jersey First Half 2011 Site-Wide Groundwater Program

 Table 3-2.
 Site Production Well Historical Pumping Information

1 able 5-2.	Site I reditetion ;	(eti 11isioricai 1 umping	0	Ingo micro n
		Total Production Well		
Report Date	Report Interval	Volume	Running Total Volume	
July-1999	2Q99	61,100,000		2,676,500,000
October-1999	3Q99	55,685,000		2,732,185,000
January-2000	4Q99	64,440,000		2,796,625,000
April-2000	1Q00	62,980,000		2,859,605,000
July-2000	2Q00	59,920,000		2,919,525,000
October-2000	3Q00	59,800,000	*	2,979,325,000
	4Q00	59,800,000	*	3,039,125,000
January-2001	1Q01	59,410,000		· · · · · · · · · · · · · · · · · · ·
April-2001	2Q01			3,098,535,000
July-2001		59,759,000		3,158,294,000
October-2001	3Q01	59,612,000	*	3,217,906,000
January-2002	4Q01	59,800,000		3,277,706,000
April-2002	1Q02	58,854,000		3,336,560,000
July-2002	2Q02	61,826,000		3,398,386,000
October-2002	3Q02	60,881,500		3,459,267,500
January-2003	4Q02	61,941,000		3,521,208,500
April-2003	1Q03	59,980,000		3,581,188,500
July-2003	2Q03	60,358,000		3,641,546,500
October-2003	3Q03	60,058,000		3,701,604,500
January-2004	4Q03	61,064,000		3,762,668,500
April-2004	1Q04	52,125,000		3,814,793,500
July-2004	2Q04	60,355,000		3,875,148,500
October-2004	3Q04	60,887,000		3,936,035,500
January-2005	4Q04	61,770,000		3,997,805,500
April-2005	1Q05	60,378,000		4,058,183,500
July-2005	2Q05	61,454,000		4,119,637,500
October-2005	3Q05	60,842,000		4,180,479,500
January-2006	4Q05	60,961,000		4,241,440,500
April-2006	1Q06	59,871,000		4,301,311,500
July-2006	2Q06	60,320,000		4,361,631,500
October-2006	3Q06	60,306,000		4,421,937,500
January-2007	4Q06	61,389,000		4,483,326,500
April-2007	1Q07	59,537,000		4,542,863,500
July-2007	2Q07	60,420,000		4,603,283,500
October-2007	3Q07	61,084,000		4,664,367,500
January-2008	4Q07	61,133,000		4,725,500,500
April-2008	1Q08	60,312,000		4,785,812,500
July-2008	2Q08	60,314,000		4,846,126,500
October-2008	3Q08	60,974,000	7	4,907,100,500
January-2009	4Q08	61,238,000		4,968,338,500
July-2009	1H09	120,201,000		5,088,539,500
December-2009	2H09	122,131,000		5,210,670,500
July-2010	1H10	120,000,000		5,330,670,500
December-2010	2H10	122,000,000		5,452,670,500
July-2011	1H11	119,941,000		5,572,611,500
odly Zori	11111	110,0-11,000		5,5. =,5 : 1,555

Total to Date	5,573,000,000

^{* -} defaulted to 650,000 gallons per week in absence of data

Wyeth Holdings Corporation Former American Cyanamid Site First Half 2011 Semi-Annual Site Wide Groundwater Program

Table 3-3 Overburden Groundwater Elevations - April 25 & 30, 2011

	Permit	Well Casing	Well Depth	Bottom of Well		ed Interval	Depth to Water	2010 Second Semi-Annual Groundwater	2011 First Semi-Annual Groundwater	Groundwater Elevation
Well I.D.	Number	Elevation (ft msl)	(ft BTOC)	Elevation (ft msl)	Тор	Bottom	(ft BTOC)	Elevation (ft msl)	Elevation (ft msl)	Change (ft msl)
MW-1A	25-33942-7	46.35	14.4	31.9	NA	NA	12.44	33.91	NA	NA
MW-2	25-33944-3	34.26	21.1	13.2	28.2	13.2	7.25	23.08	27.01	3.93
MW-3	25-33945-1	35.94	22.2	13.7	28.7	13.7	5.40	26.62	30.54	3.92
MW-5	25-33946-0	35.00	22.5	12.5	27.5	12.5	6.18	25.33	28.82	3.49
MW-7	25-33949-4	34.47	21.7	12.8	27.8	12.8	3.45	28.22	31.02	2.80
MW-9	25-33950-8	40.88	25.1	15.8	35.8	15.8	11.88	27.12	29.00	1.88
MW-10	NA	40.13	22.0	18.1	36.1	18.1	5.35	33.35	34.78	1.43
MW-12	NA	34.26	22.0	12.3	30.3	12.3	6.24	23.50	28.02	4.52
MW-15	NA	30.36	23.0	7.4	27.4	7.4	1.40	26.30	28.96	2.66
MW-17	NA	34.42	19.0	15.4	30.4	15.4	4.66	25.57	29.76	4.19
MW-18A	NA	34.43	19.0	15.4	32.4	15.4	6.26	26.45	28.17	1.72
MW-19	NA	34.21	20.0	14.2	32.2	14.2	6.39	25.10	27.82	2.72
MW-22R	25-00065340	35.92	20.0	15.9	25.9	15.9	7.89	25.17	28.03	2.86
MW-25	NA	34.37	16.5	17.9	30.4	17.9	5.76	25.59	28.61	3.02
MW-28	NA	35.19	22.0	13.2	32.2	13.2	7.46	26.56	27.73	1.17
MP11-W1S	25-00065339	33.72	18.0	15.7	25.7	15.7	6.15	24.97	27.57	2.60
MW05-W1S	25-00065337	34.37	18.0	16.4	26.4	16.4	7.74	22.44	26.63	4.19
28-R	NA	30.88	17.8	13.1	18.1	13.1	3.55	26.59	27.33	0.74
19-R	25-31283-9	36.94	11.6	25.3	30.3	25.3	3.46	31.83	33.48	1.65
21-R	25-31284-7	51.71	22.6	29.1	34.1	29.1	17.58	31.86	34.13	2.27
O-R	25-22855	37.61	17.9	19.7	24.7	19.7	3.88	30.28	33.73	3.45
AAA	25-24942-8	29.31	16.8	12.5	17.5	12.5	3.76	23.48	25.55	2.07
CCC-R	25-50084	39.63	26.5	13.1	18.1	13.1	13.72	22.55	25.91	3.36
EEE-R	25-31282-1	37.98	25.1	12.9	17.9	12.9	11.23	21.96	26.75	4.79
III	25-25027-2	30.69	19.8	10.9	15.9	10.9	2.68	26.85	28.01	1.16
KKK	25-25029-9	39.63	28.3	11.3	16.3	11.3	12.60	25.54	27.03	1.49
16MW-2	NA	28.8	16.1	12.7	17.7	12.7	4.17	24.01	24.63	0.62
32-R	25-33063-2	38.65	20.4	18.3	23.3	18.3	NM	36.41	NM	NM
34-R	25-33062-4	42.91	26.3	16.6	21.6	16.6	14.02	25.51	28.89	3.38
36-R	25-33061-6	39.47	24.7	14.8	19.8	14.8	9.30	26.64	30.17	3.53
P24-91-1	25-39209	41.40	26.8	14.6	24.6	14.6	12.83	23.79	28.57	4.78
38-R	25-33064-1	43.24	25.6	17.6	22.6	17.6	12.23	26.53	31.01	4.48
41-R	25-33065-9	40.46	26.2	14.3	19.3	14.3	11.13	26.94	29.33	2.39
42-R	25-33066-7	41.05	24.2	16.9	21.9	16.9	12.11	27.39	28.94	1.55
TFP-94-1 R	25-49039	31.28	19.1	12.2	20.2	12.2	3.47	24.18	27.81	3.63
PZ-12-1	25-56205	28.43	14.7	13.7	23.7	13.7	3.2	22.15	25.23	NA
PZ-12-2	25-56206	28.22	14.9	13.3	23.3	13.3	4.32	21.62	23.90	NA
PZ-12-3	25-56207	28.93	15.0	13.9	23.9	13.9	3.27	23.35	25.66	NA
PZ-12-4	25-56208	27.6	16.8	10.8	20.8	10.8	4.25	22.06	23.35	NA
PZ-12-5	25-56209	26.64	14.9	11.8	21.8	11.8	2.99	23.48	23.65	NA
PZ-12-6	25-56210	26.48	15.2	11.3	21.3	11.3	3.69	21.73	22.79	NA
01-MW-01	NA	27.33	15.4	NA NA	NA	NA	3.81	20.11	23.52	NA
01-MW-02	NA	27.94	18.1	NA	NA	NA	4.35	20.27	23.59	NA
01-MW-03	NA	27.01	17.5	NA 10.0	NA	NA	3.11	22.87	23.90	NA
FLOD-W2S	25-00067732	26.31	12.4	13.9	18.9	13.9	4.15	18.48	22.16	NA
FLOD-W1S	25-00067731	27.62	17.4	10.2	15.2	10.2	5.24	19.28	22.38	NA 0.04
Staff Gauge-1	NA NA	23.61	NA	NA NA	NA	NA	1.94	21.06	21.67	0.61
Staff Gauge-4	NA NA	39.29	NA	NA NA	NA NA	NA	10.52	28.46	28.77 NM	0.31 NM
Staff Gauge-7	NA NA	19.19 33.82	NA NA	NA NA	NA NA	NA NA	NM NM	17.86 27.76	NM NM	NM NM
Staff Gauge-8 Staff Gauge-9	NA NA	33.82 31.29	NA NA	NA NA	NA NA	NA NA	NM 3.95	27.76 27.77	NM 27.34	-0.43
Staff Gauge-9 Staff Gauge-10	NA NA	31.29 34.78	NA NA	NA NA	NA NA	NA NA	3.95 8.48	27.77	27.34 26.30	-0.43 NA
Staff Gauge-11	NA NA	28.58	NA NA	NA NA	NA	NA	1.48	27.59	27.10	-0.49
Staff Gauge-12 Staff Gauge-14	NA NA	28.54 25.42	NA NA	NA NA	NA NA	NA NA	3.92 2.94	25.13 21.69	24.62 22.48	-0.51 NA
Staff Gauge-14 Staff Gauge-15	NA NA	25.42 21.63	NA NA	NA NA	NA NA		2.94 NM	21.69 NM	22.48 NM	NA NA
Staff Gauge-15 Staff Gauge-16		21.63	NA NA	NA NA	NA NA	NA NA	NM 3.58	NM 23.90	NM 24.73	NA 0.83
		28.31	INA	INA	INA	INA	3.58	23.90	24./3	

Notes:

It BTOC - feet below top of casing
It msi - feet mean sea level
NA - Not Available
NM - Not Measured
SG-7 was submerged at the time of measurement.
SG-8 damaged during construction.
MW-1A depth to water measured April 30, 2011.

Wyeth Holdings Corporation Former American Cyanamid Site First Half 2011 Semi-Annual Site Wide Groundwater Program

Table 3-4 Bedrock Water Elevations - April 25, 2011

Well Permit	Casing Elevation	Well Depth	Bottom of Well Elevation		d Interval n (ft msl)	Depth to Water	2010 Second Semi-Annual Groundwater Elevation	2011 First Semi-Annual Groundwater Elevation	Groundwater Elevation Change	
Number	Number		(ft msl)	Top	Bottom	(ft BTOC)		(ft msl)	(ft msl)	
Production Well										
PW-2*	25-42456	36.33	300.0	-263.7	-13.7	-263.7	78.79	-45.09	-42.46	2.63
PW-3*	25-42216	36.49	299.0	-262.5	-13.5	-262.5	NM	-45.18	NM	NM
Hill Property										
PW-16*	25-8217	56.73	404.0	-347.3	11.7	-347.3	NM	NM	NM	NM
Perimeter Bedrock	Wells									
SS (Port 1)	25-20094-3	32.31	60.0	-27.7	-20.0	-40.0	Artesian	28.88	NA	NA
SS (Port 2)	25-20094-3	32.31	255.0	-222.7	-215.0	-235.0	2.57	28.53	29.74	1.21
SS (Port 3)	25-20094-3	32.31	382.0	-349.7	-342.0	-362.0	Artesian	28.83	NA	NA
TT (Port 1)	25-20095	47.81	75.0	-27.2	-17.0	-37.0	21.08	25.03	26.73	1.70
TT (Port 2)	25-20095	47.81	192.0	-144.2	-134.0	-154.0	27.00	18.79	20.81	2.02
TT (Port 3)	25-20095	47.81	310.0	-262.2	-252.0	-272.0	70.02	-4.19	-22.21	-18.02
WW (Port 1)	25-20632-0	25.18	35.0	-9.8	-1.0	-21.0	6.01	15.46	19.17	3.71
WW (Port 2)	25-20632-0	25.18	152.0	-126.8	-118.0	-138.0	5.53	15.53	19.65	4.12
WW (Port 3)	25-20632-0	25.18	375.0	-349.8	-341.0	-361.0	5.21	16.28	19.97	3.69
XX (Port 1)	25-20630	26.77	35.0	-8.2	0.0	-20.0	6.18	17.03	20.59	3.56
XX (Port 2)	25-20630	26.77	190.0	-163.2	-155.0	-175.0	5.59	17.79	21.18	3.39
XX (Port 3)	25-20630	26.77	380.0	-353.2	-345.0	-365.0	7.07	16.71	19.70	2.99
YY (Port 1)	25-20631	72.19	55.5	16.7	34.0	14.0	39.48	29.45	32.71	3.26
YY (Port 2)	25-20631	72.19	170.5	-98.3	-81.0	-101.0	43.51	26.66	28.68	2.02
YY (Port 3)	25-20631	72.19	345.5	-273.3	-256.0	-276.0	49.10	19.82	23.09	3.27
ZZ (Port 1)	25-20633-8	42.11	70.5	-28.4	-10.0	-30.0	10.23	28.90	31.88	2.98
ZZ (Port 2)	25-20633-8	42.11	200.5	-158.4	-140.0	-160.0	3.29	34.47	38.82	4.35
ZZ (Port 3)	25-20633-8	42.11	280.5	-238.4	-220.0	-240.0	3.50	34.80	38.61	3.81
ZZ (Port 4)	25-20633-8	42.11	320.5	-278.4	-270.0	-280.0	3.61	35.49	38.50	3.01
MJ*	NA	53.47	160.0	-106.5	NA	-106.5	NM	NA	NA	NA
Main Plant Bedrock										
AAAA-O*	25-25419	32.61	82.3	-49.7	7.6	-49.7	4.32	26.05	28.29	2.24
AAAA-shall	25-25419	32.41	123.4	-91.0	-77.6	-91.0	4.94	25.57	27.47	1.90
AAAA-inter	25-25419	32.37	201.3	-168.9	-162.6	-168.9	6.48	23.83	25.89	2.06
AAAA-deep	25-25419	32.4	300.0	-267.6	-257.6	-267.6	4.14	25.90	28.26	2.36
BBBB-O*	25-25420-1	36.04	68.5	-32.5	-4.0	-32.5	7.98	24.96	28.06	3.10
BBBB-shall	25-25420-1	36.22	155.0	-118.8	-108.8	-118.8	19.42	12.39	16.80	4.41
BBBB-deep CCCC-shall	25-25420-1 25-25421	36.10 39.14	360.0 59.4	-323.9 -20.3	-313.9 -19.0	-323.9 -29.0	118.10 16.32	-80.93 20.44	-82.00 22.82	-1.07 2.38
CCCC-shall CCCC-inter	25-25421	39.14	59.4 185.9	-20.3 -146.9	-19.0	-29.0 -119.0	15.83	20.44	22.82	-2.38 -2.99
CCCC-inter	25-25421	38.55	375.0	-336.5	-259.0	-269.0	11.20	20.30	27.35	7.05
DDDD-O*	25-25422	49.67	50.9	-336.5	9.7	-269.0	22.06	24.37	27.61	3.24
DDDD-shall	25-25422	49.67	69.1	-19.4	-170.3	-180.3	40.78	6.46	8.89	2.43
DDDD-shail DDDD-deep	25-25422	49.67	365.0	-315.3	-305.3	-315.3	21.87	24.53	27.80	3.27
EEEE (Port 1)	25-27783-9	62.04	55.5	6.5	26.0	6.0	34.83	24.10	27.21	3.11
EEEE (Port 2)	25-27783-9	62.04	90.5	-28.5	-9.0	-29.0	34.03	24.29	27.33	3.04
EEEE (Port 3)	25-27783-9	62.04	170.5	-108.5	-89.0	-109.0	36.2	22.66	25.84	3.18
EEEE (Port 4)	25-27783-9	62.04	280.5	-218.5	-199.0	-219.0	38.96	20.29	23.08	2.79
FFFF (Port 1)	25-27784-7	62.67	55.5	7.2	25.0	5.0	37.24	22.55	25.43	2.88
FFFF (Port 2)	25-27784-7	62.67	95.5	-32.8	-15.0	-35.0	38.56	21.21	24.11	2.90
FFFF (Port 3)	25-27784-7	62.67	200.5	-137.8	-120.0	-140.0	39.76	20.00	22.91	2.91
FFFF (Port 4)	25-27784-7	62.67	275.5	-212.8	-195.0	-215.0	46.1	14.00	16.57	2.57
GGGG (Port 1)	25-27785-5	51.04	60.0	-9.0	0.0	-20.0	27.84	13.04	23.20	10.16
GGGG (Port 2)	25-27785-5	51.04	110.0	-59.0	-50.0	-70.0	27.98	43.31	23.06	-20.25
GGGG (Port 3)	25-27785-5	51.04	205.0	-154.0	-145.0	-165.0	36	20.84	15.04	-5.80
IIII-O*	25-32189	28.24	80.7	-52.5	-9.8	-52.5	0.18	22.18	28.06	5.88
IIII-shall	25-32189	28.24	172.4	-144.2	-116.8	-144.2	5.36	19.02	22.88	3.86
IIII - deep	25-32189	28.24	320.0	-291.8	-251.8	-291.8	-3.10	28.18	31.34	3.16
JJJJ-O*	25-32190-1	28.80	36.3	-7.5	-9.2	-66.2	0.59	22.55	28.21	5.66
JJJJ-shall	25-32190-1	28.80	225.8	-197.0	-161.2	-197.0	4.88	20.49	23.92	3.43
JJJJ-deep	25-32190-1	28.80	395.0	-366.2	-336.2	-366.2	-3.03	28.47	31.83	3.36
mpoundments 1&2								==		
FLOD-W2BS	25-67733	26.12	40.0	-13.9	-0.9	-15.9	5.13	20.99	NA	NA

Notes:

NA - Not Available
NM - Not Measured
ft BTOC - feet below top of casing
ft msl - feet mean sea level
* denotes open bedrock well
- Water level at well MJ was not gauged because modifications made by well owner prevent access.
- Beginning with the second quarter 2008 sampling event artesian flow at wells IIII-deep and JJJJ-deep will be measured.

		Sample ID	01-MW-01	01-MW-01 L	01-MW-01 U
	GW Quality	Sample Date	5/18/2011	5/18/2011	5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	Peri Pump	PDB	PDB
1,1,1-Trichloroethane	30			5 U	1 U
1,1,2,2-Tetrachloroethane	1			5 U	1 U
1,1,2-Trichloroethane	3			5 U	1 U
1,1-Dichloroethane	50			5 U	1 U
1,1-Dichloroethene	1			5 U	1 U
1,2,4-Trichlorobenzene	9			2.9 J	0.79 J
1,2-Dibromo-3-chloropropane	0.02			50 U	10 U
1,2-Dibromoethane	0.03			10 U	2 U
1,2-Dichlorobenzene	600			872 Y	108
1,2-Dichloroethane	2			5 U	1 U
1,2-Dichloroethene (total)	NA			5 U	1 U
1,2-Dichloropropane	1			5 U	1 U
1,3,5-Trimethylbenzene	NA			25 U	5 U
1,3-Dichlorobenzene	600			5.2	1.1
1,4-Dichlorobenzene	75			57.8	10.6
1,4-Dioxane	NA		2.1 U ³		
2-Butanone	300			50 U	10 U
2-Chlorotoluene	NA			25 U	5 U
2-Hexanone	100			25 U	5 U
2-Nitropropane	NA			50 R	10 R
4-Chlorotoluene	NA			25 U	5 U
4-Methyl-2-pentanone	100			25 U	5 U
Acetone	6000			50 U	4.9 J
Acrolein	4			250 U	50 U
Acrylonitrile	2			250 U	50 U
Benzene	1			3040 Y	150 Y
Bromodichloromethane	1			5 U	1 U
Bromoform	4			20 U	4 U
Bromomethane	10			10 U	2 U
Carbon Disulfide	700			10 U	2 U
Carbon Tetrachloride	1			5 U	1 U
Chlorobenzene	50			26.9	2.2
Chlorobromomethane	NA			25 U	5 U
Chloroethane	100			5 U	1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality Standards	Sample ID Sample Date Unit	01-MW-01 5/18/2011 ug/l	01-MW-01 L 5/18/2011 ug/l	01-MW-01 U 5/18/2011 ug/l
Chemical Name	ug/l	Sample Method	Peri Pump	PDB	PDB
Chloroform	70			5 U	1 U
Chloromethane	100			5 U	1 U
cis-1,2-Dichloroethene	70			5 U	1 U
cis-1,3-Dichloropropylene	1			5 U	1 U
Cyclohexane	NA			25 U	5 U
Dibromochloromethane	1			5 U	1 U
Dichlorodifluoromethane	1000			25 U	5 U
Diisopropyl ether	20000			25 U	5 U
Ethyl acetate	6000			25 U	5 U
Ethyl Acrylate	NA			25 U	5 U
Ethyl ether	1000			2.6 J	5 U
Ethylbenzene	700			2.3 J	0.39 J
Freon 113	NA			25 U	5 U
Isopropylbenzene	700			10 U	0.32 J
Methyl acetate	7000			25 U	5 U
Methyl tert butyl ether (MTBE)	70			5 U	1 U
Methylacrylonitrile	NA			50 U	10 U
Methylcyclohexane	NA			25 U	5 U
Methylene Chloride	3			10 U	2 U
o-Xylene	NA			5.5	0.6 J
Styrene	100			25 U	5 U
Tetrachloroethene	1			5 U	1 U
Toluene	600			4.3 J	0.95 J
trans-1,2-Dichloroethene	100			5 U	1 U
trans-1,3-Dichloropropene	1			5 U	1 U
Trichloroethene	1			5 U	1 U
Trichlorofluoromethane	2000			25 U	5 U
Vinyl Chloride	1			5 U	1 U
Xylene (Total)	1000			7.4	0.95 J
ryione (Total)	1000			7.1	0.000

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	01-MW-02 5/18/2011	01-MW-02 L 5/18/2011	01-MW-02 U 5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	Peri Pump	PDB	PDB
1,1,1-Trichloroethane	30	•		250 U	250 U
1,1,2,2-Tetrachloroethane	1			250 U	250 U
1,1,2-Trichloroethane	3			250 U	250 U
1,1-Dichloroethane	50			250 U	250 U
1,1-Dichloroethene	1			250 U	250 U
1,2,4-Trichlorobenzene	9			156 J Y	141 J Y
1,2-Dibromo-3-chloropropane	0.02			2500 U	2500 U
1,2-Dibromoethane	0.03			500 U	500 U
1,2-Dichlorobenzene	600			21700 Y	22700 Y
1,2-Dichloroethane	2			250 U	250 U
1,2-Dichloroethene (total)	NA			250 U	250 U
1,2-Dichloropropane	1			250 U	250 U
1,3,5-Trimethylbenzene	NA			137 J	129 J
1,3-Dichlorobenzene	600			132 J	134 J
1,4-Dichlorobenzene	75			1750 Y	1800 Y
1,4-Dioxane	NA		2.1 U ³		
2-Butanone	300			2500 U	2500 U
2-Chlorotoluene	NA			1300 U	1300 U
2-Hexanone	100			1300 U	1300 U
2-Nitropropane	NA			2500 R	2500 R
4-Chlorotoluene	NA			1300 U	1300 U
4-Methyl-2-pentanone	100			1300 U	1300 U
Acetone	6000			1910 J	1290 J
Acrolein	4			13000 U	13000 U
Acrylonitrile	2			13000 U	13000 U
Benzene	1			127000 Y	119000 Y
Bromodichloromethane	1			250 U	250 U
Bromoform	4			1000 U	1000 U
Bromomethane	10			500 U	500 U
Carbon Disulfide	700			173 J	153 J
Carbon Tetrachloride	1			250 U	250 U
Chlorobenzene	50			1300 Y	1320 Y
Chlorobromomethane	NA			1300 U	1300 U
Chloroethane	100			250 U	250 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	01-MW-02 5/18/2011	01-MW-02 L 5/18/2011	01-MW-02 U 5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	Peri Pump	PDB	PDB
Chloroform	70			250 U	250 U
Chloromethane	100			384 Y	380 Y
cis-1,2-Dichloroethene	70			250 U	250 U
cis-1,3-Dichloropropylene	1			250 U	250 U
Cyclohexane	NA			1300 U	1300 U
Dibromochloromethane	1			250 U	250 U
Dichlorodifluoromethane	1000			1300 U	1300 U
Diisopropyl ether	20000			1300 U	1300 U
Ethyl acetate	6000			1300 U	1300 U
Ethyl Acrylate	NA			1300 U	1300 U
Ethyl ether	1000			1300 U	1300 U
Ethylbenzene	700			83.3 J	82 J
Freon 113	NA			1300 U	1300 U
Isopropylbenzene	700			500 U	500 U
Methyl acetate	7000			1300 U	1300 U
Methyl tert butyl ether (MTBE)	70			250 U	250 U
Methylacrylonitrile	NA			2500 U	2500 U
Methylcyclohexane	NA			1300 U	1300 U
Methylene Chloride	3			500 U	500 U
o-Xylene	NA			303	279
Styrene	100			1300 U	1300 U
Tetrachloroethene	1			250 U	250 U
Toluene	600			7750 Y	7360 Y
trans-1,2-Dichloroethene	100			250 U	250 U
trans-1,3-Dichloropropene	1			250 U	250 U
Trichloroethene	1			250 U	250 U
Trichlorofluoromethane	2000			1300 U	1300 U
Vinyl Chloride	1			250 U	250 U
Xylene (Total)	1000			1090 Y	1020 Y
, (
	OTES: II - not detected	L – actimated value	NA – no applicabl	o oritorio N. nogo	nto

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	01-MW-03 5/18/2011	01-MW-03 L 5/18/2011	01-MW-03 U 5/18/2011
	Standards	Unit	ug/l	ug/I	ug/l
Chemical Name	ug/l	Sample Method	Peri Pump	PDB	PDB
1,1,1-Trichloroethane	30			1000 U	1000 U
1,1,2,2-Tetrachloroethane	1			1000 U	1000 U
1.1.2-Trichloroethane	3			1000 U	1000 U
1.1-Dichloroethane	50			1000 U	1000 U
1.1-Dichloroethene	1			1000 U	1000 U
1,2,4-Trichlorobenzene	9			5000 U	5000 U
1,2-Dibromo-3-chloropropane	0.02			10000 U	10000 U
1,2-Dibromoethane	0.03			2000 U	2000 U
1,2-Dichlorobenzene	600			1880 Y	2000 Y
1,2-Dichloroethane	2			1000 U	1000 U
1,2-Dichloroethene (total)	NA			1000 U	1000 U
1,2-Dichloropropane	1			1000 U	1000 U
1,3,5-Trimethylbenzene	NA			5000 U	5000 U
1,3-Dichlorobenzene	600			1000 U	1000 U
1,4-Dichlorobenzene	75			1000 U	1000 U
1,4-Dioxane	NA		2.1 U ³		
2-Butanone	300			10000 U	10000 U
2-Chlorotoluene	NA			5000 U	5000 U
2-Hexanone	100			5000 U	5000 U
2-Nitropropane	NA			10000 R	10000 R
4-Chlorotoluene	NA			5000 U	5000 U
4-Methyl-2-pentanone	100			5000 U	5000 U
Acetone	6000			10000 U	10000 U
Acrolein	4			50000 U	50000 U
Acrylonitrile	2			50000 U	50000 U
Benzene	1			254000 Y	248000 Y
Bromodichloromethane	1			1000 U	1000 U
Bromoform	4			4000 U	4000 U
Bromomethane	10			2000 U	2000 U
Carbon Disulfide	700			2000 U	2000 U
Carbon Tetrachloride	1			1000 U	1000 U
Chlorobenzene	50			1000 U	1000 U
Chlorobromomethane	NA			5000 U	5000 U
Chloroethane	100			1000 U	1000 U

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality Standards	Sample ID Sample Date Unit	01-MW-03 5/18/2011 ug/l	01-MW-03 L 5/18/2011 ug/l	01-MW-03 U 5/18/2011 ug/l
Chemical Name	ug/l	Sample Method	ug/i Peri Pump	ug/i PDB	ug/i PDB
Chloroform	70	Campio monica		1000 U	1000 U
Chloromethane	100			1000 U	1000 U
cis-1,2-Dichloroethene	70			1000 U	1000 U
cis-1,3-Dichloropropylene	1			1000 U	1000 U
Cyclohexane	NA			5000 U	5000 U
Dibromochloromethane	1			1000 U	1000 U
Dichlorodifluoromethane	1000			5000 U	5000 U
Diisopropyl ether	20000			5000 U	5000 U
Ethyl acetate	6000			5000 U	5000 U
Ethyl Acrylate	NA			5000 U	5000 U
Ethyl ether	1000			5000 U	5000 U
Ethylbenzene	700			1000 U	1000 U
Freon 113	NA			5000 U	5000 U
Isopropylbenzene	700			2000 U	2000 U
Methyl acetate	7000			5000 U	5000 U
Methyl tert butyl ether (MTBE)	70			1000 U	1000 U
Methylacrylonitrile	NA			10000 U	10000 U
Methylcyclohexane	NA			5000 U	5000 U
Methylene Chloride	3			2000 U	2000 U
o-Xylene	NA			647 J	687 J
Styrene	100			5000 U	5000 U
Tetrachloroethene	1			1000 U	1000 U
Toluene	600			25100 Y	25200 Y
trans-1,2-Dichloroethene	100			1000 U	1000 U
trans-1,3-Dichloropropene	1			1000 U	1000 U
Trichloroethene	1			1000 U	1000 U
Trichlorofluoromethane	2000			5000 U	5000 U
Vinyl Chloride	1			1000 U	1000 U
Xylene (Total)	1000			2840 Y	2710 Y

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

		Sample ID	19R	21R	28R
	GW Quality	Sample Date	4/28/2011	4/27/2011	4/28/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
1,1,1-Trichloroethane	30		10 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1		10 U	1 U	1 U
1,1,2-Trichloroethane	3		10 U	1 U	1 U
1,1-Dichloroethane	50		10 U	1 U	0.71 J
1,1-Dichloroethene	1		10 U	1 U	1 U
1,2,4-Trichlorobenzene	9		50 U	5 U	1 J
1,2-Dibromo-3-chloropropane	0.02		100 U	10 U	10 U
1,2-Dibromoethane	0.03		20 U	2 U	2 U
1,2-Dichlorobenzene	600		10 U	1 U	27.2
1,2-Dichloroethane	2		10 U	1 U	5.4 Y
1,2-Dichloroethene (total)	NA		10 U	1 U	0.52 J
1,2-Dichloropropane	1		10 U	1 U	1 U
1,3,5-Trimethylbenzene	NA		50 U	5 U	5 U
1,3-Dichlorobenzene	600		10 U	1 U	0.45 J
1,4-Dichlorobenzene	75		10 U	1 U	2.9
1,4-Dioxane	NA		1300 U		130 U
2-Butanone	300		100 U	10 U	10 U
2-Chlorotoluene	NA		50 U	5 U	5 U
2-Hexanone	100		50 U	5 U	5 U
2-Nitropropane	NA		100 U	10 U	10 U
4-Chlorotoluene	NA		50 U	5 U	5 U
4-Methyl-2-pentanone	100		50 U	5 U	5 U
Acetone	6000		100 U	10 U	5.9 J
Acrolein	4		500 U	50 U	50 U
Acrylonitrile	2		500 U	50 U	50 U
Benzene	1		8.9 J Y	1 U	1.8 Y
Bromodichloromethane	1		10 U	1 U	1 U
Bromoform	4		40 U	4 U	4 U
Bromomethane	10		20 U	2 U	2 U
Carbon Disulfide	700		20 U	2 U	2 U
Carbon Tetrachloride	1		10 U	1 U	1 U
Chlorobenzene	50		6.7 J	1 U	40.6
Chlorobromomethane	NA		50 U	5 U	5 U
Chloroethane	100		10 U	1 U	1 U

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	19R 4/28/2011	21R 4/27/2011	28R 4/28/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
Chloroform	70	,	10 U	1 U	1 U
Chloromethane	100		10 U	1 U	1 U
cis-1,2-Dichloroethene	70		10 U	1 U	0.52 J
cis-1,3-Dichloropropylene	1		10 U	1 U	1 U
Cyclohexane	NA		50 U	5 U	5 U
Dibromochloromethane	1		10 U	1 U	1 U
Dichlorodifluoromethane	1000		50 U	5 U	5 U
Diisopropyl ether	20000		50 U	5 U	5 U
Ethyl acetate	6000		50 U	5 U	5 U
Ethyl Acrylate	NA		50 U	5 U	5 U
Ethyl ether	1000		50 U	5 U	118
Ethylbenzene	700		10 U	1 U	1 U
Freon 113	NA		50 U	5 U	5 U
Isopropylbenzene	700		20 U	2 U	0.58 J
Methyl acetate	7000		50 U	5 U	5 U
Methyl tert butyl ether (MTBE)	70		10 U	1 U	1 U
Methylacrylonitrile	NA		100 U	10 U	10 U
Methylcyclohexane	NA		50 U	5 U	5 U
Methylene Chloride	3		20 U	2 U	2 U
o-Xylene	NA		10 U	1 U	0.35 J
Styrene	100		50 U	5 U	5 U
Tetrachloroethene	1		10 U	1 U	1 U
Toluene	600		33.7	1 U	1 U
trans-1,2-Dichloroethene	100		10 U	1 U	1 U
trans-1,3-Dichloropropene	1		10 U	1 U	1 U
Trichloroethene	1		10 U	1 U	0.94 J
Trichlorofluoromethane	2000		50 U	5 U	5 U
Vinyl Chloride	1		10 U	1 U	1 U
Xylene (Total)	1000		10 U	1 U	0.35 J
	NOTEC, II not detected	L satimated value	NIA no annliach	la aritaria NI naga	

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

		Sample ID	32R	34R	38R
	GW Quality	Sample Date	5/13/2011	4/28/2011	4/29/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
1,1,1-Trichloroethane	30		1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1		1 U	1 U	1 U
1,1,2-Trichloroethane	3		1 U	1 U	1 U
1,1-Dichloroethane	50		1 U	1 U	1 U
1,1-Dichloroethene	1		1 U	1 U	1 U
1,2,4-Trichlorobenzene	9		5 U	2.3 J	8
1,2-Dibromo-3-chloropropane	0.02		10 U	10 U	10 U
1,2-Dibromoethane	0.03		2 U	2 U	2 U
1,2-Dichlorobenzene	600		1.1	27.7	10.2
1,2-Dichloroethane	2		1 U	1 U	1 U
1,2-Dichloroethene (total)	NA		1 U	1 U	1 U
1,2-Dichloropropane	1		1 U	1 U	1 U
1,3,5-Trimethylbenzene	NA		5 U	5 U	0.99 J
1,3-Dichlorobenzene	600		0.93 J	37.2	1.9
1,4-Dichlorobenzene	75		3	14.3	34.4
1,4-Dioxane	NA			130 U	2 U
2-Butanone	300		10 U	10 U	10 U
2-Chlorotoluene	NA		5 U	5 U	5 U
2-Hexanone	100		5 U	5 U	5 U
2-Nitropropane	NA		10 R	10 U	10 U
4-Chlorotoluene	NA		5 U	5 U	5 U
4-Methyl-2-pentanone	100		5 U	5 U	5 U
Acetone	6000		5.1 J	4.8 J	10 U
Acrolein	4		50 U	50 U	50 U
Acrylonitrile	2		50 U	50 U	50 U
Benzene	1		1 U	4.9 Y	21.3 Y
Bromodichloromethane	1		1 U	1 U	1 U
Bromoform	4		4 U	4 U	4 U
Bromomethane	10		2 U	2 U	2 U
Carbon Disulfide	700		2 U	2 U	2 U
Carbon Tetrachloride	1		1 U	1 U	1 U
Chlorobenzene	50		29.7	39.2	81.5 Y
Chlorobromomethane	NA		5 U	5 U	5 U
Chloroethane	100		1 U	1 U	1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	32R 5/13/2011	34R 4/28/2011	38R 4/29/2011
	Standards	Unit	ug/l	ug/I	ug/I
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
Chloroform	70		1 U	1 U	1 U
Chloromethane	100		1 U	1 U	1 U
cis-1,2-Dichloroethene	70		1 U	1 U	1 U
cis-1,3-Dichloropropylene	1		1 U	1 U	1 U
Cyclohexane	NA		5 U	5 U	5 U
Dibromochloromethane	1		1 U	1 U	1 U
Dichlorodifluoromethane	1000		5 U	5 U	5 U
Diisopropyl ether	20000		5 U	5 U	5 U
Ethyl acetate	6000		5 U	5 U	5 U
Ethyl Acrylate	NA		5 U	5 U	5 U
Ethyl ether	1000		5 U	1.9 J	5 U
Ethylbenzene	700		1 U	2.2	5.4
Freon 113	NA		5 U	5 U	5 U
Isopropylbenzene	700		0.38 J	0.62 J	7
Methyl acetate	7000		5 U	5 U	5 U
Methyl tert butyl ether (MTBE)	70		1 U	1 U	1 U
Methylacrylonitrile	NA		10 U	10 U	10 U
Methylcyclohexane	NA		5 U	5 U	0.48 J
Methylene Chloride	3		2 U	2 U	2 U
o-Xylene	NA		1 U	1.5	8
Styrene	100		5 U	5 U	5 U
Tetrachloroethene	1		1 U	1 U	1 U
Toluene	600		1 U	0.97 J	1.7
trans-1,2-Dichloroethene	100		1 U	1 U	1 U
trans-1,3-Dichloropropene	1		1 U	1 U	1 U
Trichloroethene	1		1 U	1 U	1 U
Trichlorofluoromethane	2000		5 U	5 U	5 U
Vinyl Chloride	1		1 U	1 U	1 U
Xylene (Total)	1000		1 U	2.8	12.5
		_			

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

 $^{^{\}rm 3}\text{-}$ Sample collected from peristalatic pump, result reported from SVOC analysis.

		Sample ID	42R	AAA	CCC-R
	GW Quality	Sample Date	4/30/2011	4/29/2011	4/30/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
1,1,1-Trichloroethane	30		2 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1		2 U	1 U	1 U
1,1,2-Trichloroethane	3		2 U	1 U	1 U
1,1-Dichloroethane	50		2 U	1 U	1 U
1,1-Dichloroethene	1		2 U	1 U	1 U
1,2,4-Trichlorobenzene	9		7.8 J	5 U	5 U
1,2-Dibromo-3-chloropropane	0.02		20 U	10 U	10 U
1,2-Dibromoethane	0.03		4 U	2 U	2 U
1,2-Dichlorobenzene	600		154	0.27 J	1 U
1,2-Dichloroethane	2		2 U	1 U	1 U
1,2-Dichloroethene (total)	NA		1.4 J	1 U	1 U
1,2-Dichloropropane	1		2 U	1 U	1 U
1,3,5-Trimethylbenzene	NA		1.4 J	5 U	5 U
1,3-Dichlorobenzene	600		65.4	0.99 J	1 U
1,4-Dichlorobenzene	75		43.6	1 U	1 U
1,4-Dioxane	NA		2.2 U	2 U	2 U
2-Butanone	300		20 U	10 U	10 U
2-Chlorotoluene	NA		10 U	5 U	5 U
2-Hexanone	100		10 U	5 U	5 U
2-Nitropropane	NA		20 U	10 U	10 U
4-Chlorotoluene	NA		10 U	5 U	5 U
4-Methyl-2-pentanone	100		10 U	5 U	5 U
Acetone	6000		20 U	10 U	7.8 J
Acrolein	4		100 U	50 U	50 U
Acrylonitrile	2		100 U	50 U	50 U
Benzene	1		29.4 Y	1 U	1 U
Bromodichloromethane	1		2 U	1 U	1 U
Bromoform	4		8 U	4 U	4 U
Bromomethane	10		4 U	2 U	2 U
Carbon Disulfide	700		4 U	2 U	2 U
Carbon Tetrachloride	1		2 U	1 U	1 U
Chlorobenzene	50		843 Y	2.2	1 U
Chlorobromomethane	NA		10 U	5 U	5 U
Chloroethane	100		2 U	1 U	1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	42R 4/30/2011	AAA 4/29/2011	CCC-R 4/30/2011
	Gw Quality Standards	Sample Date Unit	4/30/2011 ug/l	4/29/2011 ug/l	4/30/2011 ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
Chloroform	70	Sample Method	2 U	0.3 J	1 U
Chloromethane	100		2 U	1 U	1 U
cis-1,2-Dichloroethene	70		0.66 J	1 U	1 U
cis-1,3-Dichloropropylene	1		2 U	1 U	1 U
Cyclohexane	NA		1.7 J	5 U	5 U
Dibromochloromethane	1		2 U	1 U	1 U
Dichlorodifluoromethane	1000		10 U	5 U	5 U
Diisopropyl ether	20000		10 U	5 U	5 U
	6000		10 U	5 U	5 U
Ethyl acetate	NA		10 U	5 U	5 U
Ethyl Acrylate					
Ethyl ether	1000		3.4 J	5 U	5 U
Ethylbenzene	700		65.5	1 U	1 U
Freon 113	NA		10 U	5 U	5 U
Isopropylbenzene	700		19.9	0.22 J	2 U
Methyl acetate	7000		10 U	5 U	5 U
Methyl tert butyl ether (MTBE)	70		2 U	1 U	1 U
Methylacrylonitrile	NA		20 U	10 U	10 U
Methylcyclohexane	NA		4.4 J	5 U	5 U
Methylene Chloride	3		4 U	2 U	2 U
o-Xylene	NA		40.7	1 U	1 U
Styrene	100		10 U	5 U	5 U
Tetrachloroethene	1		2 U	1 U	1 U
Toluene	600		7.7	1 U	1 U
trans-1,2-Dichloroethene	100		0.77 J	1 U	1 U
trans-1,3-Dichloropropene	1		2 U	1 U	1 U
Trichloroethene	1		0.48 J	1 U	1 U
Trichlorofluoromethane	2000		10 U	5 U	5 U
Vinyl Chloride	1		2 U	1 U	1 U
Xylene (Total)	1000		48.7	1 U	1 U

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

 $^{^{\}rm 3}\text{-}$ Sample collected from peristalatic pump, result reported from SVOC analysis.

	OW Oweling	Sample ID	EEE-R	EEE-R DUP	FLOD-W1S
	GW Quality	Sample Date Unit	4/30/2011	4/30/2011	5/18/2011
	Standards	•	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
1,1,1-Trichloroethane	30		1 U	1 U	100 U
1,1,2,2-Tetrachloroethane	1		1 U	1 U	100 U
1,1,2-Trichloroethane	3		1 U	1 U	100 U
1,1-Dichloroethane	50		1 U	1 U	100 U
1,1-Dichloroethene	1		1 U	1 U	100 U
1,2,4-Trichlorobenzene	9		5 U	5 U	17.5 J Y
1,2-Dibromo-3-chloropropane	0.02		10 U	10 U	1000 U
1,2-Dibromoethane	0.03		2 U	2 U	200 U
1,2-Dichlorobenzene	600		1 U	1 U	3050 Y
1,2-Dichloroethane	2		1 U	1 U	100 U
1,2-Dichloroethene (total)	NA		1 U	1 U	100 U
1,2-Dichloropropane	1		1 U	1 U	100 U
1,3,5-Trimethylbenzene	NA		5 U	5 U	34.7 J
1,3-Dichlorobenzene	600		1 U	1 U	24.3 J
1,4-Dichlorobenzene	75		1 U	1 U	273 Y
1,4-Dioxane	NA		2 U		2 U
2-Butanone	300		10 U	10 U	1000 U
2-Chlorotoluene	NA		5 U	5 U	500 U
2-Hexanone	100		5 U	5 U	500 U
2-Nitropropane	NA		10 U	10 U	1000 R
4-Chlorotoluene	NA		5 U	5 U	500 U
4-Methyl-2-pentanone	100		5 U	5 U	500 U
Acetone	6000		10 U	10 U	1000 U
Acrolein	4		50 U	50 U	5000 U
Acrylonitrile	2		50 U	50 U	5000 U
Benzene	1		1 U	1 U	40400 Y
Bromodichloromethane	1		1 U	1 U	100 U
Bromoform	4		4 U	4 U	400 U
Bromomethane	10		2 U	2 U	200 U
Carbon Disulfide	700		2 U	2 U	200 U
Carbon Tetrachloride	1		1 U	1 U	100 U
Chlorobenzene	50		1 U	1 U	190 Y
Chlorobromomethane	NA		5 U	5 U	500 U
Chloroethane	100		1 U	1 U	100 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	EEE-R 4/30/2011	EEE-R DUP 4/30/2011	FLOD-W1S 5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
Chloroform	70		1 U	1 U	100 U
Chloromethane	100		1 U	1 U	40.5 J
cis-1,2-Dichloroethene	70		1 U	1 U	100 U
cis-1,3-Dichloropropylene	1		1 U	1 U	100 U
Cyclohexane	NA		5 U	5 U	500 U
Dibromochloromethane	1		1 U	1 U	100 U
Dichlorodifluoromethane	1000		5 U	5 U	500 U
Diisopropyl ether	20000		5 U	5 U	500 U
Ethyl acetate	6000		5 U	5 U	500 U
Ethyl Acrylate	NA		5 U	5 U	500 U
Ethyl ether	1000		5 U	5 U	500 U
Ethylbenzene	700		1 U	1 U	100 U
Freon 113	NA		5 U	5 U	500 U
Isopropylbenzene	700		2 U	2 U	200 U
Methyl acetate	7000		5 U	5 U	500 U
Methyl tert butyl ether (MTBE)	70		1 U	1 U	100 U
Methylacrylonitrile	NA		10 U	10 U	1000 U
Methylcyclohexane	NA		5 U	5 U	500 U
Methylene Chloride	3		2 U	2 U	200 U
o-Xylene	NA		1 U	1 U	68.7 J
Styrene	100		5 U	5 U	500 U
Tetrachloroethene	1		1 U	1 U	100 U
Toluene	600		1 U	1 U	1650 Y
trans-1,2-Dichloroethene	100		1 U	1 U	100 U
trans-1,3-Dichloropropene	1		1 U	1 U	100 U
Trichloroethene	1		1 U	1 U	100 U
Trichlorofluoromethane	2000		5 U	5 U	500 U
Vinyl Chloride	1		1 U	1 U	100 U
Xylene (Total)	1000		1 U	1 U	231

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

 $^{^{\}rm 3}\text{-}$ Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	FLOD-W2BS 5/19/2011	FLOD-W2S 5/19/2011	III 4/29/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
1,1,1-Trichloroethane	30		1 U	25 U	1 U
1,1,2,2-Tetrachloroethane	1		1 U	25 U	1 U
1,1,2-Trichloroethane	3		1 U	25 U	1 U
1,1-Dichloroethane	50		1 U	25 U	1 U
1,1-Dichloroethene	1		1 U	25 U	1 U
1,2,4-Trichlorobenzene	9		0.79 J	130 U	5 U
1,2-Dibromo-3-chloropropane	0.02		10 U	250 U	10 U
1,2-Dibromoethane	0.03		2 U	50 U	2 U
1,2-Dichlorobenzene	600		1670 Y	183	1 U
1,2-Dichloroethane	2		1 U	25 U	1 U
1,2-Dichloroethene (total)	NA		1 U	25 U	1 U
1,2-Dichloropropane	1		1 U	25 U	1 U
1,3,5-Trimethylbenzene	NA		5 U	130 U	5 U
1,3-Dichlorobenzene	600		16.7	25 U	1 U
1,4-Dichlorobenzene	75		101 Y	8.8 J	1 U
1,4-Dioxane	NA		2 U	2 U	2 U
2-Butanone	300		10 U	250 U	10 U
2-Chlorotoluene	NA		5 U	130 U	5 U
2-Hexanone	100		5 U	130 U	5 U
2-Nitropropane	NA		10 R	250 R	10 U
4-Chlorotoluene	NA		5 U	130 U	5 U
4-Methyl-2-pentanone	100		5 U	130 U	5 U
Acetone	6000		10 U	250 U	10 U
Acrolein	4		50 U	1300 U	50 U
Acrylonitrile	2		50 U	1300 U	50 U
Benzene	1		18 Y	16400 Y	1 U
Bromodichloromethane	1		1 U	25 U	1 U
Bromoform	4		4 U	100 U	4 U
Bromomethane	10		2 U	50 U	2 U
Carbon Disulfide	700		2 U	50 U	2 U
Carbon Tetrachloride	1		1 U	25 U	1 U
Chlorobenzene	50		124 Y	25 U	1 U
Chlorobromomethane	NA		5 U	130 U	5 U
Chloroethane	100		1 U	25 U	1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

		Sample ID	FLOD-W2BS	FLOD-W2S	III
	GW Quality	Sample Date	5/19/2011	5/19/2011	4/29/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
Chloroform	70		1 U	25 U	1 U
Chloromethane	100		1 U	25 U	1 U
cis-1,2-Dichloroethene	70		1 U	25 U	1 U
cis-1,3-Dichloropropylene	1		1 U	25 U	1 U
Cyclohexane	NA		5 U	130 U	5 U
Dibromochloromethane	1		1 U	25 U	1 U
Dichlorodifluoromethane	1000		5 U	130 U	5 U
Diisopropyl ether	20000		5 U	130 U	5 U
Ethyl acetate	6000		5 U	130 U	5 U
Ethyl Acrylate	NA		5 U	130 U	5 U
Ethyl ether	1000		73.9	130 U	5 U
Ethylbenzene	700		0.47 J	18.2 J	1 U
Freon 113	NA		5 U	130 U	5 U
Isopropylbenzene	700		1.4 J	28.5 J	2 U
Methyl acetate	7000		5 U	130 U	5 U
Methyl tert butyl ether (MTBE)	70		0.99 J	25 U	1 U
Methylacrylonitrile	NA		10 U	250 U	10 U
Methylcyclohexane	NA		5 U	130 U	5 U
Methylene Chloride	3		2 U	50 U	2 U
o-Xylene	NA		2.2	20 J	1 U
Styrene	100		5 U	130 U	5 U
Tetrachloroethene	1		1 U	25 U	1 U
Toluene	600		1.9	25 U	1 U
trans-1,2-Dichloroethene	100		1 U	25 U	1 U
trans-1,3-Dichloropropene	1		1 U	25 U	1 U
Trichloroethene	1		1 U	25 U	1 U
Trichlorofluoromethane	2000		5 U	130 U	5 U
Vinyl Chloride	1		1 U	25 U	1 U
Xylene (Total)	1000		2.9	20 J	1 U
	NOTEC: II not detected	L satimated value	VIA no annliachla	aritaria NI magat	

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	KKK 4/29/2011	MW-1A 4/30/2011	MW-2 UPPER 4/28/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	Submerssible Pump	PDB
1,1,1-Trichloroethane	30		1 U	20 U	20 U
1,1,2,2-Tetrachloroethane	1		1 U	20 U	20 U
1,1,2-Trichloroethane	3		1 U	20 U	20 U
1,1-Dichloroethane	50		1 U	20 U	20 U
1,1-Dichloroethene	1		1 U	20 U	20 U
1,2,4-Trichlorobenzene	9		5 U	100 U	12.3 J Y
1,2-Dibromo-3-chloropropane	0.02		10 U	200 U	200 U
1,2-Dibromoethane	0.03		2 U	40 U	40 U
1,2-Dichlorobenzene	600		1 U	124	233
1,2-Dichloroethane	2		1 U	20 U	20 U
1,2-Dichloroethene (total)	NA		1 U	20 U	20 U
1,2-Dichloropropane	1		1 U	20 U	20 U
1,3,5-Trimethylbenzene	NA		5 U	206	62.3 J
1,3-Dichlorobenzene	600		1 U	20 U	20 U
1,4-Dichlorobenzene	75		1 U	16.6 J	19.6 J
1,4-Dioxane	NA		2 U	10 U	2500 U
2-Butanone	300		10 U	200 U	200 U
2-Chlorotoluene	NA		5 U	100 U	100 U
2-Hexanone	100		5 U	100 U	100 U
2-Nitropropane	NA		10 U	200 U	200 U
4-Chlorotoluene	NA		5 U	100 U	100 U
4-Methyl-2-pentanone	100		5 U	100 U	100 U
Acetone	6000		10 U	200 U	200 U
Acrolein	4		50 U	1000 U	1000 U
Acrylonitrile	2		50 U	1000 U	1000 U
Benzene	1		1 U	502 Y	3460 Y
Bromodichloromethane	1		1 U	20 U	20 U
Bromoform	4		4 U	80 U	80 U
Bromomethane	10		2 U	40 U	40 U
Carbon Disulfide	700		2 U	40 U	40 U
Carbon Tetrachloride	1		1 U	20 U	20 U
Chlorobenzene	50		1 U	7690 Y	306 Y
Chlorobromomethane	NA		5 U	100 U	100 U
Chloroethane	100		1 U	20 U	20 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	KKK 4/29/2011	MW-1A 4/30/2011	MW-2 UPPER 4/28/2011
	Standards	Sample Date Unit	4/29/2011 ug/l	4/30/2011 ug/l	4/28/2011 ug/l
Chemical Name	ug/l	Sample Method	PDB	Submerssible Pump	PDB
Chloroform	70	Sample Method	1 U	20 U	20 U
Chloromethane	100		1 U	20 U	20 U
	70		1 U	20 U	20 U
cis-1,2-Dichloroethene cis-1,3-Dichloropropylene	1		1 U	20 U	20 U
	NA			20 U	
Cyclohexane Dibromochloromethane	INA 1		5 U 1 U	20 U	100 U 20 U
	· · · · · · · · · · · · · · · · · · ·				
Dichlorodifluoromethane	1000		5 U	100 U	100 U
Diisopropyl ether	20000		5 U	100 U	100 U
Ethyl acetate	6000		5 U	100 U	100 U
Ethyl Acrylate	NA		5 U	100 U	100 U
Ethyl ether	1000		5 U	100 U	55.3 J
Ethylbenzene	700		1 U	366	56.9
Freon 113	NA		5 U	100 U	100 U
Isopropylbenzene	700		2 U	11.3 J	6.5 J
Methyl acetate	7000		5 U	100 U	100 U
Methyl tert butyl ether (MTBE)	70		1 U	20 U	20 U
Methylacrylonitrile	NA		10 U	200 U	200 U
Methylcyclohexane	NA		5 U	100 U	100 U
Methylene Chloride	3		2 U	40 U	40 U
o-Xylene	NA		1 U	131	169
Styrene	100		5 U	100 U	100 U
Tetrachloroethene	1		1 U	20 U	20 U
Toluene	600		1 U	1590 Y	1300 Y
trans-1,2-Dichloroethene	100		1 U	20 U	20 U
trans-1,3-Dichloropropene	1		1 U	20 U	20 U
Trichloroethene	1		1 U	20 U	20 U
Trichlorofluoromethane	2000		5 U	100 U	100 U
Vinyl Chloride	1		1 U	20 U	20 U
Xylene (Total)	1000		1 U	350	492
,					

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

 $^{^{\}rm 3}\text{-}$ Sample collected from peristalatic pump, result reported from SVOC analysis.

	014 0 17	Sample ID	MW-22R	0-R	PW-2
	GW Quality	Sample Date	4/30/2011	4/27/2011	4/14/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	Submerssible Pump	PDB	Tap ¹
1,1,1-Trichloroethane	30		1 U	1 U	2.5 U
1,1,2,2-Tetrachloroethane	1		1 U	1 U	2.5 U
1,1,2-Trichloroethane	3		1 U	1 U	2.5 U
1,1-Dichloroethane	50		1 U	1 U	2.5 U
1,1-Dichloroethene	1		1 U	1 U	2.5 U
1,2,4-Trichlorobenzene	9		5 U	5 U	98.2 Y
1,2-Dibromo-3-chloropropane	0.02		10 U	10 U	
1,2-Dibromoethane	0.03		2 U	2 U	
1,2-Dichlorobenzene	600		1 U	1 U	73.1
1,2-Dichloroethane	2		1 U	1 U	2.5 U
1,2-Dichloroethene (total)	NA		1 U	1 U	1.9 J
1,2-Dichloropropane	1		1 U	1 U	2.5 U
1,3,5-Trimethylbenzene	NA		5 U	5 U	
1,3-Dichlorobenzene	600		1 U	1 U	92.9
1,4-Dichlorobenzene	75		1 U	1 U	49.3
1,4-Dioxane	NA		2 U		
2-Butanone	300		10 U	10 U	25 U
2-Chlorotoluene	NA		5 U	5 U	
2-Hexanone	100		5 U	5 U	13 U
2-Nitropropane	NA		10 U	10 U	
4-Chlorotoluene	NA		5 U	5 U	
4-Methyl-2-pentanone	100		5 U	5 U	13 U
Acetone	6000		10 U	10 U	25 U
Acrolein	4		50 U	50 U	
Acrylonitrile	2		50 U	50 U	
Benzene	1		26.2 Y	1 U	373 Y
Bromodichloromethane	1		1 U	1 U	2.5 U
Bromoform	4		4 U	4 U	10 U
Bromomethane	10		2 U	2 U	5 U
Carbon Disulfide	700		2 U	2 U	3150 Y
Carbon Tetrachloride	1		1 U	1 U	2.5 U
Chlorobenzene	50		9.9	1 U	1010 Y
Chlorobromomethane	NA		5 U	5 U	
Chloroethane	100		1 U	1 U	2.5 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	CW Quality	Sample ID		O-R	PW-2
	GW Quality Standards	Sample Date	4/30/2011	4/27/2011	4/14/2011
Oh ami a I Nama		Unit	ug/l	ug/l	ug/l Tap¹
Chemical Name	ug/l	Sample Method	Submerssible Pump	PDB	
Chloroform	70		1 U	1 U	2.5 U
Chloromethane	100		1 U	1 U	2.5 U
cis-1,2-Dichloroethene	70		1 U	1 U	1.9 J
cis-1,3-Dichloropropylene	1		1 U	1 U	2.5 U
Cyclohexane	NA		5 U	5 U	
Dibromochloromethane	1		1 U	1 U	2.5 U
Dichlorodifluoromethane	1000		5 U	5 U	
Diisopropyl ether	20000		5 U	5 U	
Ethyl acetate	6000		5 U	5 U	
Ethyl Acrylate	NA		5 U	5 U	
Ethyl ether	1000		5 U	5 U	
Ethylbenzene	700		1 U	1 U	3.1
Freon 113	NA		5 U	5 U	
Isopropylbenzene	700		2 U	2 U	
Methyl acetate	7000		5 U	5 U	
Methyl tert butyl ether (MTBE)	70		1 U	1 U	
Methylacrylonitrile	NA		10 U	10 U	
Methylcyclohexane	NA		5 U	5 U	
Methylene Chloride	3		2 U	2 U	5 U
o-Xylene	NA		0.54 J	1 U	
Styrene	100		5 U	5 U	13 U
Tetrachloroethene	1		1 U	1 U	2.5 U
Toluene	600		0.27 J	1 U	3.9
trans-1,2-Dichloroethene	100		1 U	1 U	2.5 U
trans-1,3-Dichloropropene	1		1 U	1 U	2.5 U
Trichloroethene	1		1 U	1 U	2.5 U
Trichlorofluoromethane	2000		5 U	5 U	
Vinyl Chloride	1		1 U	1 U	2.5 U
Xylene (Total)	1000		1	1 U	6.2
rigionis (Tetal)					V. <u> </u>

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

 $^{^{\}rm 3}\text{-}$ Sample collected from peristalatic pump, result reported from SVOC analysis.

		Sample ID	PW-3	PZ-12-1 L	PZ-12-1 U
	GW Quality	Sample Date	4/26/2011	5/18/2011	5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	Tap ¹	PDB	PDB
1,1,1-Trichloroethane	30		10 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1		10 U	1 U	1 U
1,1,2-Trichloroethane	3		10 U	1 U	1 U
1,1-Dichloroethane	50		10 U	1 U	1 U
1,1-Dichloroethene	1		10 U	1 U	1 U
1,2,4-Trichlorobenzene	9		85.1 Y	0.3 J	5 U
1,2-Dibromo-3-chloropropane	0.02		100 U	10 U	10 U
1,2-Dibromoethane	0.03		20 U	2 U	2 U
1,2-Dichlorobenzene	600		82.6	1.1	0.53 J
1,2-Dichloroethane	2		10 U	1 U	1 U
1,2-Dichloroethene (total)	NA		10 U	1 U	1 U
1,2-Dichloropropane	1		10 U	1 U	1 U
1,3,5-Trimethylbenzene	NA		50 U	5 U	5 U
1,3-Dichlorobenzene	600		107	0.47 J	0.33 J
1,4-Dichlorobenzene	75		59.5	0.59 J	0.32 J
1,4-Dioxane	NA		2 U	2 U	
2-Butanone	300		100 U	10 U	10 U
2-Chlorotoluene	NA		50 U	5 U	5 U
2-Hexanone	100		50 U	5 U	5 U
2-Nitropropane	NA		100 U	10 R	10 R
4-Chlorotoluene	NA		50 U	5 U	5 U
4-Methyl-2-pentanone	100		50 U	5 U	5 U
Acetone	6000		100 U	6.4 J	5.1 J
Acrolein	4		500 U	50 U	50 U
Acrylonitrile	2		500 U	50 U	50 U
Benzene	1		418 Y	1.3 Y	0.28 J
Bromodichloromethane	1		10 U	1 U	1 U
Bromoform	4		40 U	4 U	4 U
Bromomethane	10		20 U	2 U	2 U
Carbon Disulfide	700		2890 Y	2 U	2 U
Carbon Tetrachloride	1		10 U	0.75 J	0.82 J
Chlorobenzene	50		861 Y	2.2	0.39 J
Chlorobromomethane	NA		50 U	5 U	5 U
Chloroethane	100		10 U	1 U	1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID	PW-3 4/26/2011	PZ-12-1 L 5/18/2011	PZ-12-1 U 5/18/2011
	GW Quality Standards	Sample Date Unit	4/26/2011 ug/l	5/18/2011 ug/l	5/18/2011 ug/l
Chemical Name	ug/l	Sample Method	ug/i Tap¹	ug/i PDB	ug/i PDB
Chloroform	70	Oumpie memes	10 U	0.7 J	0.66 J
Chloromethane	100		10 U	1 U	1 U
cis-1,2-Dichloroethene	70		10 U	1 U	1 U
cis-1,3-Dichloropropylene	1		10 U	1 U	1 U
Cyclohexane	NA		50 U	5 U	5 U
Dibromochloromethane	1		10 U	1 U	1 U
Dichlorodifluoromethane	1000		50 U	5 U	5 U
Diisopropyl ether	20000		50 U	5 U	5 U
Ethyl acetate	6000		50 U	5 U	5 U
Ethyl Acrylate	NA		50 U	5 U	5 U
Ethyl ether	1000		23.5 J	5 U	5 U
Ethylbenzene	700		3 J	1 U	1 U
Freon 113	NA		50 U	5 U	5 U
Isopropylbenzene	700		20 U	2 U	2 U
Methyl acetate	7000		50 U	5 U	5 U
Methyl tert butyl ether (MTBE)	70		10 U	1 U	1 U
Methylacrylonitrile	NA		100 U	10 U	10 U
Methylcyclohexane	NA		50 U	5 U	5 U
Methylene Chloride	3		20 U	2 U	2 U
o-Xylene	NA		10 U	1 U	1 U
Styrene	100		50 U	5 U	5 U
Tetrachloroethene	1		10 U	1 U	1 U
Toluene	600		3.7 J	1 U	1 U
trans-1,2-Dichloroethene	100		10 U	1 U	1 U
trans-1,3-Dichloropropene	1		10 U	1 U	1 U
Trichloroethene	1		10 U	1 U	1 U
Trichlorofluoromethane	2000		50 U	5 U	5 U
Vinyl Chloride	1		10 U	1 U	1 U
Xylene (Total)	1000		6 J	1 U	1 U

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

 $^{^{\}rm 3}\text{-}$ Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	PZ-12-2 L 5/18/2011	PZ-12-2 U 5/18/2011	PZ-12-3 L 5/18/2011
	GW Quality Standards	Sample Date Unit	5/18/2011 ug/l	5/18/2011 ug/l	5/18/2011 ug/l
Chemical Name		Sample Method	ug/i PDB	ug/i PDB	ug/i PDB
1,1,1-Trichloroethane	ug/l 30	Sample Method	1 U	1 U	1 U
	1		1 U	1 U	1 U
1,1,2,2-Tetrachloroethane					
1,1,2-Trichloroethane	3		1 U	1 U	1 U
1,1-Dichloroethane	50		1 U	1 U	1 U
1,1-Dichloroethene	1		1 U	1 U	1 U
1,2,4-Trichlorobenzene	9		5 U	5 U	5 U
1,2-Dibromo-3-chloropropane	0.02		10 U	10 U	10 U
1,2-Dibromoethane	0.03		2 U	2 U	2 U
1,2-Dichlorobenzene	600		13.4	1 U	0.44 J
1,2-Dichloroethane	2		1 U	1 U	1 U
1,2-Dichloroethene (total)	NA		1 U	1 U	1 U
1,2-Dichloropropane	1		1 U	1 U	1 U
1,3,5-Trimethylbenzene	NA		5 U	5 U	5 U
1,3-Dichlorobenzene	600		1 U	1 U	1 U
1,4-Dichlorobenzene	75		1.7	1 U	1 U
1,4-Dioxane	NA		2 U		2 U
2-Butanone	300		10 U	10 U	10 U
2-Chlorotoluene	NA		5 U	5 U	5 U
2-Hexanone	100		5 U	5 U	5 U
2-Nitropropane	NA		10 R	10 R	10 R
4-Chlorotoluene	NA		5 U	5 U	5 U
4-Methyl-2-pentanone	100		5 U	5 U	5 U
Acetone	6000		8.1 J	6.2 J	5.2 J
Acrolein	4		50 U	50 U	50 U
Acrylonitrile	2		50 U	50 U	50 U
Benzene	1		90.8 Y	0.7 J	56.8 Y
Bromodichloromethane	1		1 U	1 U	1 U
Bromoform	4		4 U	4 U	4 U
Bromomethane	10		2 U	2 U	2 U
Carbon Disulfide	700		2 U	2 U	2 U
Carbon Tetrachloride	1		1 U	1 U	1 U
Chlorobenzene	50		0.73 J	1 U	1 U
Chlorobromomethane	NA		5 U	5 U	5 U
Chloroethane	100		1 U	1 U	1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	PZ-12-2 L 5/18/2011	PZ-12-2 U 5/18/2011	PZ-12-3 L 5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
Chloroform	70		1 U	1 U	1 U
Chloromethane	100		1 U	1 U	1 U
cis-1,2-Dichloroethene	70		1 U	1 U	1 U
cis-1,3-Dichloropropylene	1		1 U	1 U	1 U
Cyclohexane	NA		5 U	5 U	5 U
Dibromochloromethane	1		1 U	1 U	1 U
Dichlorodifluoromethane	1000		5 U	5 U	5 U
Diisopropyl ether	20000		5 U	5 U	5 U
Ethyl acetate	6000		5 U	5 U	5 U
Ethyl Acrylate	NA		5 U	5 U	5 U
Ethyl ether	1000		5 U	5 U	5 U
Ethylbenzene	700		1 U	1 U	1 U
Freon 113	NA		5 U	5 U	5 U
Isopropylbenzene	700		2 U	2 U	2 U
Methyl acetate	7000		5 U	5 U	5 U
Methyl tert butyl ether (MTBE)	70		1 U	1 U	1 U
Methylacrylonitrile	NA		10 U	10 U	10 U
Methylcyclohexane	NA		5 U	5 U	5 U
Methylene Chloride	3		2 U	2 U	2 U
o-Xylene	NA		1 U	1 U	1 U
Styrene	100		5 U	5 U	5 U
Tetrachloroethene	1		1 U	1 U	1 U
Toluene	600		1 U	1 U	1 U
trans-1,2-Dichloroethene	100		1 U	1 U	1 U
trans-1,3-Dichloropropene	1		1 U	1 U	1 U
Trichloroethene	1		1 U	1 U	1 U
Trichlorofluoromethane	2000		5 U	5 U	5 U
Vinyl Chloride	1		1 U	1 U	1 U
Xylene (Total)	1000		1 U	1 U	1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

 $^{^{\}rm 3}\text{-}$ Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	PZ-12-3 L DUP 5/18/2011	PZ-12-3 U 5/18/2011	PZ-12-4 L 5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
1,1,1-Trichloroethane	30	•	1 U	1 U	1000 U
1,1,2,2-Tetrachloroethane	1		1 U	1 U	1000 U
1,1,2-Trichloroethane	3		1 U	1 U	1000 U
1,1-Dichloroethane	50		1 U	1 U	1000 U
1,1-Dichloroethene	1		1 U	1 U	1000 U
1,2,4-Trichlorobenzene	9		5 U	5 U	5000 U
1,2-Dibromo-3-chloropropane	0.02		10 U	10 U	10000 U
1,2-Dibromoethane	0.03		2 U	2 U	2000 U
1,2-Dichlorobenzene	600		0.52 J	0.3 J	2490 Y
1,2-Dichloroethane	2		1 U	1.4	1000 U
1,2-Dichloroethene (total)	NA		1 U	1 U	1000 U
1,2-Dichloropropane	1		1 U	1 U	1000 U
1,3,5-Trimethylbenzene	NA		5 U	5 U	348 J
1,3-Dichlorobenzene	600		1 U	1 U	1000 U
1,4-Dichlorobenzene	75		1 U	1 U	1000 U
1,4-Dioxane	NA		2 U		2 U
2-Butanone	300		10 U	10 U	10000 U
2-Chlorotoluene	NA		5 U	5 U	5000 U
2-Hexanone	100		5 U	5 U	5000 U
2-Nitropropane	NA		10 R	10 R	10000 R
4-Chlorotoluene	NA		5 U	5 U	5000 U
4-Methyl-2-pentanone	100		5 U	5 U	5000 U
Acetone	6000		5.5 J	6.9 J	10000 U
Acrolein	4		50 U	50 U	50000 U
Acrylonitrile	2		50 U	50 U	50000 U
Benzene	1		53.8 Y	56 Y	238000 Y
Bromodichloromethane	1		1 U	1 U	1000 U
Bromoform	4		4 U	4 U	4000 U
Bromomethane	10		2 U	2 U	2000 U
Carbon Disulfide	700		2 U	2 U	762 J Y
Carbon Tetrachloride	1		1 U	1 U	1000 U
Chlorobenzene	50		1 U	1 U	1000 U
Chlorobromomethane	NA		5 U	5 U	5000 U
Chloroethane	100		1 U	1 U	1000 U
	TEC. II				

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	PZ-12-3 L DUP 5/18/2011	PZ-12-3 U 5/18/2011	PZ-12-4 L 5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
Chloroform	70		1 U	1 U	1000 U
Chloromethane	100		1 U	1 U	1000 U
cis-1,2-Dichloroethene	70		1 U	1 U	1000 U
cis-1,3-Dichloropropylene	1		1 U	1 U	1000 U
Cyclohexane	NA		5 U	5 U	5000 U
Dibromochloromethane	1		1 U	1 U	1000 U
Dichlorodifluoromethane	1000		5 U	5 U	5000 U
Diisopropyl ether	20000		5 U	5 U	5000 U
Ethyl acetate	6000		5 U	5 U	5000 U
Ethyl Acrylate	NA		5 U	5 U	5000 U
Ethyl ether	1000		5 U	5 U	5000 U
Ethylbenzene	700		1 U	1 U	1000 U
Freon 113	NA		5 U	5 U	5000 U
Isopropylbenzene	700		2 U	2 U	2000 U
Methyl acetate	7000		5 U	5 U	5000 U
Methyl tert butyl ether (MTBE)	70		1 U	1 U	1000 U
Methylacrylonitrile	NA		10 U	10 U	10000 U
Methylcyclohexane	NA		5 U	5 U	5000 U
Methylene Chloride	3		2 U	2 U	2000 U
o-Xylene	NA		1 U	1 U	957 J
Styrene	100		5 U	5 U	5000 U
Tetrachloroethene	1		1 U	1 U	1000 U
Toluene	600		1 U	1 U	33100 Y
trans-1,2-Dichloroethene	100		1 U	1 U	1000 U
trans-1,3-Dichloropropene	1		1 U	1 U	1000 U
Trichloroethene	1		1 U	1 U	1000 U
Trichlorofluoromethane	2000		5 U	5 U	5000 U
Vinyl Chloride	1		1 U	1 U	1000 U
Xylene (Total)	1000		1 U	1 U	3830 Y

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

 $^{^{\}rm 3}\text{-}$ Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	PZ-12-4 U 5/18/2011	PZ-12-5 L 5/18/2011	PZ-12-5 U 5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
1,1,1-Trichloroethane	30		1000 U	5 U	1 U
1,1,2,2-Tetrachloroethane	1		1000 U	5 U	1 U
1,1,2-Trichloroethane	3		1000 U	5 U	1 U
1,1-Dichloroethane	50		1000 U	5 U	1 U
1,1-Dichloroethene	1		1000 U	5 U	1 U
1,2,4-Trichlorobenzene	9		5000 U	25 U	5 U
1,2-Dibromo-3-chloropropane	0.02		10000 U	50 U	10 U
1,2-Dibromoethane	0.03		2000 U	10 U	2 U
1,2-Dichlorobenzene	600		2810 Y	8.7	0.52 J
1,2-Dichloroethane	2		1000 U	5 U	1 U
1,2-Dichloroethene (total)	NA		1000 U	5 U	1 U
1,2-Dichloropropane	1		1000 U	5 U	1 U
1,3,5-Trimethylbenzene	NA		398 J	25 U	5 U
1,3-Dichlorobenzene	600		1000 U	5 U	1 U
1,4-Dichlorobenzene	75		1000 U	5 U	1 U
1,4-Dioxane	NA			2 U	
2-Butanone	300		10000 U	50 U	10 U
2-Chlorotoluene	NA		5000 U	25 U	5 U
2-Hexanone	100		5000 U	25 U	5 U
2-Nitropropane	NA		10000 R	50 R	10 R
4-Chlorotoluene	NA		5000 U	25 U	5 U
4-Methyl-2-pentanone	100		5000 U	25 U	5 U
Acetone	6000		10000 U	50 U	7.9 J
Acrolein	4		50000 U	250 U	50 U
Acrylonitrile	2		50000 U	250 U	50 U
Benzene	1		238000 Y	2950 Y	69.6 Y
Bromodichloromethane	1		1000 U	5 U	1 U
Bromoform	4		4000 U	20 U	4 U
Bromomethane	10		2000 U	10 U	2 U
Carbon Disulfide	700		853 J Y	10 U	2 U
Carbon Tetrachloride	1		1000 U	5 U	1 U
Chlorobenzene	50		1000 U	2.1 J	1 U
Chlorobromomethane	NA		5000 U	25 U	5 U
Chloroethane	100		1000 U	5 U	1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	CW Quality	Sample ID	PZ-12-4 U	PZ-12-5 L	PZ-12-5 U
	GW Quality Standards	Sample Date Unit	5/18/2011	5/18/2011	5/18/2011
Chemical Name			ug/l PDB	ug/l PDB	ug/l PDB
	ug/l	Sample Method			
Chloroform	70		1000 U	5 U	1 U
Chloromethane	100		1000 U	5 U	1 U
cis-1,2-Dichloroethene	70		1000 U	5 U	1 U
cis-1,3-Dichloropropylene	1		1000 U	5 U	1 U
Cyclohexane	NA		5000 U	25 U	5 U
Dibromochloromethane	1		1000 U	5 U	1 U
Dichlorodifluoromethane	1000		5000 U	25 U	5 U
Diisopropyl ether	20000		5000 U	25 U	5 U
Ethyl acetate	6000		5000 U	25 U	5 U
Ethyl Acrylate	NA		5000 U	25 U	5 U
Ethyl ether	1000		5000 U	25 U	5 U
Ethylbenzene	700		1000 U	5 U	1 U
Freon 113	NA		5000 U	25 U	5 U
Isopropylbenzene	700		2000 U	10 U	2 U
Methyl acetate	7000		5000 U	25 U	5 U
Methyl tert butyl ether (MTBE)	70		1000 U	5 U	1 U
Methylacrylonitrile	NA		10000 U	50 U	10 U
Methylcyclohexane	NA		5000 U	25 U	5 U
Methylene Chloride	3		2000 U	10 U	2 U
o-Xylene	NA		964 J	4 J	1 U
Styrene	100		5000 U	25 U	5 U
Tetrachloroethene	1		1000 U	5 U	1 U
Toluene	600		35300 Y	163	5.2
trans-1,2-Dichloroethene	100		1000 U	5 U	1 U
trans-1,3-Dichloropropene	1		1000 U	5 U	1 U
Trichloroethene	1		1000 U	5 U	1 U
Trichlorofluoromethane	2000		5000 U	25 U	5 U
Vinyl Chloride	1		1000 U	5 U	1 U
Xylene (Total)	1000		4080 Y	13	1 U
. , (

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

 $^{^{\}rm 3}\text{-}$ Sample collected from peristalatic pump, result reported from SVOC analysis.

		Sample ID	PZ-12-6 L	PZ-12-6 U	SS P1
	GW Quality	Sample Date	5/18/2011	5/18/2011	4/26/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	Valve ²
1,1,1-Trichloroethane	30		10 U	5 U	1 U
1,1,2,2-Tetrachloroethane	1		10 U	5 U	1 U
1,1,2-Trichloroethane	3		10 U	5 U	1 U
1,1-Dichloroethane	50		10 U	5 U	1 U
1,1-Dichloroethene	1		10 U	5 U	1 U
1,2,4-Trichlorobenzene	9		50 U	25 U	5 U
1,2-Dibromo-3-chloropropane	0.02		100 U	50 U	10 U
1,2-Dibromoethane	0.03		20 U	10 U	2 U
1,2-Dichlorobenzene	600		353	197	1 U
1,2-Dichloroethane	2		10 U	5 U	1 U
1,2-Dichloroethene (total)	NA		10 U	5 U	1 U
1,2-Dichloropropane	1		10 U	5 U	1 U
1,3,5-Trimethylbenzene	NA		87.3	52.8	5 U
1,3-Dichlorobenzene	600		3.5 J	2.1 J	1 U
1,4-Dichlorobenzene	75		16.3	9.1	1 U
1,4-Dioxane	NA		2 U		130 U
2-Butanone	300		100 U	50 U	10 U
2-Chlorotoluene	NA		50 U	25 U	5 U
2-Hexanone	100		50 U	25 U	5 U
2-Nitropropane	NA		100 R	50 R	10 U
4-Chlorotoluene	NA		50 U	25 U	5 U
4-Methyl-2-pentanone	100		50 U	25 U	5 U
Acetone	6000		100 U	50 U	10 U
Acrolein	4		500 U	250 U	50 U
Acrylonitrile	2		500 U	250 U	50 U
Benzene	1		8890 Y	3220 Y	1 U
Bromodichloromethane	1		10 U	5 U	1 U
Bromoform	4		40 U	20 U	4 U
Bromomethane	10		20 U	10 U	2 U
Carbon Disulfide	700		20 U	10 U	2 U
Carbon Tetrachloride	1		10 U	5 U	1 U
Chlorobenzene	50		7.8 J	2.7 J	1 U
Chlorobromomethane	NA		50 U	25 U	5 U
Chloroethane	100		10 U	5 U	1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	PZ-12-6 L 5/18/2011	PZ-12-6 U 5/18/2011	SS P1 4/26/2011
	Standards	Unit	ug/I	ug/l	ug/I
Chemical Name	ug/l	Sample Method	PDB	PDB	ug/i Valve²
Chloroform	70	Campio monica	10 U	5 U	1 U
Chloromethane	100		10 U	5 U	1 U
cis-1,2-Dichloroethene	70		10 U	5 U	1 U
cis-1,3-Dichloropropylene	1		10 U	5 U	1 U
Cyclohexane	NA		50 U	25 U	5 U
Dibromochloromethane	1		10 U	5 U	1 U
Dichlorodifluoromethane	1000		50 U	25 U	5 U
Diisopropyl ether	20000		50 U	25 U	5 U
Ethyl acetate	6000		50 U	25 U	5 U
Ethyl Acrylate	NA		50 U	25 U	5 U
Ethyl ether	1000		11.5 J	9.5 J	5 U
Ethylbenzene	700		22.8	12.7	1 U
Freon 113	NA		50 U	25 U	5 U
Isopropylbenzene	700		50.3	26	2 U
Methyl acetate	7000		50 U	25 U	5 U
Methyl tert butyl ether (MTBE)	70		10 U	5 U	1 U
Methylacrylonitrile	NA		100 U	50 U	10 U
Methylcyclohexane	NA		50 U	25 U	5 U
Methylene Chloride	3		20 U	10 U	2 U
o-Xylene	NA		131	83.5	1 U
Styrene	100		50 U	25 U	5 U
Tetrachloroethene	1		10 U	5 U	1 U
Toluene	600		563	217	1 U
trans-1,2-Dichloroethene	100		10 U	5 U	1 U
trans-1,3-Dichloropropene	1		10 U	5 U	1 U
Trichloroethene	1		10 U	5 U	1 U
Trichlorofluoromethane	2000		50 U	25 U	5 U
Vinyl Chloride	1		10 U	5 U	1 U
Xylene (Total)	1000		468	288	1 U

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

 $^{^{\}rm 3}\text{-}$ Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	SS P1 DUP 4/26/2011	SS P2 4/26/2011	SS P3 4/26/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	Valve ²	Valve ²	Valve ²
1,1,1-Trichloroethane	30		1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1		1 U	1 U	1 U
1,1,2-Trichloroethane	3		1 U	1 U	1 U
1,1-Dichloroethane	50		1 U	1 U	1 U
1,1-Dichloroethene	1		1 U	1 U	1 U
1,2,4-Trichlorobenzene	9		5 U	5 U	5 U
1,2-Dibromo-3-chloropropane	0.02		10 U	10 U	10 U
1,2-Dibromoethane	0.03		2 U	2 U	2 U
1,2-Dichlorobenzene	600		1 U	1 U	1 U
1,2-Dichloroethane	2		1 U	1 U	1 U
1,2-Dichloroethene (total)	NA		1 U	1 U	1 U
1,2-Dichloropropane	1		1 U	1 U	1 U
1,3,5-Trimethylbenzene	NA		5 U	5 U	5 U
1,3-Dichlorobenzene	600		1 U	1 U	1 U
1,4-Dichlorobenzene	75		1 U	1 U	1 U
1,4-Dioxane	NA		130 U	130 U	130 U
2-Butanone	300		10 U	10 U	10 U
2-Chlorotoluene	NA		5 U	5 U	5 U
2-Hexanone	100		5 U	5 U	5 U
2-Nitropropane	NA		10 U	10 U	10 U
4-Chlorotoluene	NA		5 U	5 U	5 U
4-Methyl-2-pentanone	100		5 U	5 U	5 U
Acetone	6000		10 U	10 U	10 U
Acrolein	4		50 U	50 U	50 U
Acrylonitrile	2		50 U	50 U	50 U
Benzene	1		1 U	1 U	1 U
Bromodichloromethane	1		1 U	1 U	1 U
Bromoform	4		4 U	4 U	4 U
Bromomethane	10		2 U	2 U	2 U
Carbon Disulfide	700		2 U	2 U	2 U
Carbon Tetrachloride	1		1 U	1 U	1 U
Chlorobenzene	50		1 U	1 U	1 U
Chlorobromomethane	NA		5 U	5 U	5 U
Chloroethane	100		1 U	1 U	1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality Standards	Sample ID Sample Date Unit	SS P1 DUP 4/26/2011 ug/l	SS P2 4/26/2011 ug/l	SS P3 4/26/2011 ug/l
Chemical Name	ug/l	Sample Method	Valve ²	Valve ²	Valve ²
Chloroform	70		1 U	1 U	1 U
Chloromethane	100		1 U	1 U	1 U
cis-1,2-Dichloroethene	70		1 U	1 U	1 U
cis-1,3-Dichloropropylene	1		1 U	1 U	1 U
Cyclohexane	NA		5 U	5 U	5 U
Dibromochloromethane	1		1 U	1 U	1 U
Dichlorodifluoromethane	1000		5 U	5 U	5 U
Diisopropyl ether	20000		5 U	5 U	5 U
Ethyl acetate	6000		5 U	5 U	5 U
Ethyl Acrylate	NA		5 U	5 U	5 U
Ethyl ether	1000		5 U	5 U	5 U
Ethylbenzene	700		1 U	1 U	1 U
Freon 113	NA		5 U	5 U	5 U
Isopropylbenzene	700		2 U	2 U	2 U
Methyl acetate	7000		5 U	5 U	5 U
Methyl tert butyl ether (MTBE)	70		1 U	1 U	1 U
Methylacrylonitrile	NA		10 U	10 U	10 U
Methylcyclohexane	NA		5 U	5 U	5 U
Methylene Chloride	3		2 U	2 U	2 U
o-Xylene	NA		1 U	1 U	1 U
Styrene	100		5 U	5 U	5 U
Tetrachloroethene	1		1 U	1 U	1 U
Toluene	600		1 U	1 U	1 U
trans-1,2-Dichloroethene	100		1 U	1 U	1 U
trans-1,3-Dichloropropene	1		1 U	1 U	1 U
Trichloroethene	1		1 U	1 U	1 U
Trichlorofluoromethane	2000		5 U	5 U	5 U
Vinyl Chloride	1		1 U	1 U	1 U
Xylene (Total)	1000		1 U	1 U	1 U
. , (

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

 $^{^{\}rm 3}\text{-}$ Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	TFP-94-1R 4/27/2011	TT P1 4/27/2011	TT P2 4/27/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	Valve 2	Valve ²	Valve ²
1,1,1-Trichloroethane	30		5 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1		5 U	1 U	1 U
1,1,2-Trichloroethane	3		5 U	1 U	1 U
1,1-Dichloroethane	50		5 U	1 U	1 U
1,1-Dichloroethene	1		5 U	1 U	1 U
1,2,4-Trichlorobenzene	9		3.1 J	5 U	5 U
1,2-Dibromo-3-chloropropane	0.02		50 U	10 U	10 U
1,2-Dibromoethane	0.03		10 U	2 U	2 U
1,2-Dichlorobenzene	600		2180 Y	1 U	1 U
1,2-Dichloroethane	2		5 U	1 U	1 U
1,2-Dichloroethene (total)	NA		5 U	201	8.9
1,2-Dichloropropane	1		5 U	1 U	1 U
1,3,5-Trimethylbenzene	NA		1.8 J	5 U	5 U
1,3-Dichlorobenzene	600		83	1 U	1 U
1,4-Dichlorobenzene	75		358 Y	1 U	1 U
1,4-Dioxane	NA			130 U	130 U
2-Butanone	300		50 U	10 U	10 U
2-Chlorotoluene	NA		25 U	5 U	5 U
2-Hexanone	100		25 U	5 U	5 U
2-Nitropropane	NA		50 U	10 U	10 U
4-Chlorotoluene	NA		25 U	5 U	5 U
4-Methyl-2-pentanone	100		25 U	5 U	5 U
Acetone	6000		50 U	10 U	10 U
Acrolein	4		250 U	50 U	50 U
Acrylonitrile	2		250 U	50 U	50 U
Benzene	1		79.7 Y	1 U	1 U
Bromodichloromethane	1		5 U	1 U	1 U
Bromoform	4		20 U	4 U	4 U
Bromomethane	10		10 U	2 U	2 U
Carbon Disulfide	700		10 U	2 U	2 U
Carbon Tetrachloride	1		5 U	1 U	1 U
Chlorobenzene	50		3460 Y	1 U	1 U
Chlorobromomethane	NA		25 U	5 U	5 U
Chloroethane	100		5 U	1 U	1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	TFP-94-1R 4/27/2011	TT P1 4/27/2011	TT P2 4/27/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	Valve ²	Valve ²	Valve ²
Chloroform	70		5 U	1 U	1 U
Chloromethane	100		5 U	1 U	1 U
cis-1,2-Dichloroethene	70		5 U	195 Y	8.9
cis-1,3-Dichloropropylene	1		5 U	1 U	1 U
Cyclohexane	NA		25 U	5 U	5 U
Dibromochloromethane	1		5 U	1 U	1 U
Dichlorodifluoromethane (CFC-12)	1000		25 U	5 U	5 U
DIISOPROPYL ETHER	20000		25 U	5 U	5 U
ETHYL ACETATE	6000		25 U	5 U	5 U
Ethyl Acrylate	NA		25 U	5 U	5 U
Ethyl ether	1000		25 U	5 U	5 U
Ethylbenzene	700		4.7 J	1 U	1 U
Freon 113	NA		25 U	5 U	5 U
Isopropylbenzene	700		10 U	2 U	2 U
METHYL ACETATE	7000		25 U	5 U	5 U
Methyl tert butyl ether (MTBE)	70		5 U	1 U	1 U
METHYLACRYLONITRILE	NA		50 U	10 U	10 U
METHYLCYLOHEXANE	NA		3 J	5 U	5 U
Methylene Chloride	3		10 U	2 U	2 U
o-Xylene	NA		9.4	1 U	1 U
Styrene	100		25 U	5 U	5 U
Tetrachloroethene	1		5 U	28.6 Y	1.4 Y
Toluene	600		2.8 J	1 U	1 U
trans-1,2-Dichloroethene	100		5 U	6.3	1 U
trans-1,3-Dichloropropene	1		5 U	1 U	1 U
Trichloroethene	1		5 U	16.2 Y	1.6 Y
Trichlorofluoromethane	2000		25 U	5 U	5 U
Vinyl Chloride	1		5 U	4.8 Y	1 U
Xylene (Total)	1000		14.6	1 U	1 U
,			-		

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

 $^{^{\}rm 3}\text{-}$ Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	TT P3 4/27/2011	WW P1 4/27/2011	WW P2 4/27/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	Valve ²	Valve ²	Valve ²
1,1,1-Trichloroethane	30		1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1		1 U	1 U	1 U
1,1,2-Trichloroethane	3		1 U	1 U	1 U
1,1-Dichloroethane	50		1 U	1 U	1 U
1,1-Dichloroethene	1		1 U	1 U	1 U
1,2,4-Trichlorobenzene	9		5 U	5 U	5 U
1,2-Dibromo-3-chloropropane	0.02		10 U	10 U	10 U
1,2-Dibromoethane	0.03		2 U	2 U	2 U
1,2-Dichlorobenzene	600		1 U	1 U	1 U
1,2-Dichloroethane	2		1 U	1 U	1 U
1,2-Dichloroethene (total)	NA		1 U	1 U	1 U
1,2-Dichloropropane	1		1 U	1 U	1 U
1,3,5-Trimethylbenzene	NA		5 U	5 U	5 U
1,3-Dichlorobenzene	600		1 U	1 U	1 U
1,4-Dichlorobenzene	75		1 U	1 U	1 U
1,4-Dioxane	NA		130 U	130 U	130 U
2-Butanone	300		10 U	10 U	10 U
2-Chlorotoluene	NA		5 U	5 U	5 U
2-Hexanone	100		5 U	5 U	5 U
2-Nitropropane	NA		10 U	10 U	10 U
4-Chlorotoluene	NA		5 U	5 U	5 U
4-Methyl-2-pentanone	100		5 U	5 U	5 U
Acetone	6000		10 U	10 U	10 U
Acrolein	4		50 U	50 U	50 U
Acrylonitrile	2		50 U	50 U	50 U
Benzene	1		0.34 J	1 U	1 U
Bromodichloromethane	1		1 U	1 U	1 U
Bromoform	4		4 U	4 U	4 U
Bromomethane	10		2 U	2 U	2 U
Carbon Disulfide	700		2 U	2 U	2 U
Carbon Tetrachloride	1		1 U	1 U	1 U
Chlorobenzene	50		1 U	1 U	1 U
Chlorobromomethane	NA		5 U	5 U	5 U
Chloroethane	100.00		1 U	1 U	1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	TT P3 4/27/2011	WW P1 4/27/2011	WW P2 4/27/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	Valve ²	Valve ²	Valve ²
Chloroform	70		1 U	1 U	1 U
Chloromethane	100		1 U	1 U	1 U
cis-1,2-Dichloroethene	70		1 U	1 U	1 U
cis-1,3-Dichloropropylene	1		1 U	1 U	1 U
Cyclohexane	NA		5 U	5 U	5 U
Dibromochloromethane	1		1 U	1 U	1 U
Dichlorodifluoromethane	1000		5 U	5 U	5 U
Diisopropyl ether	20000		5 U	5 U	5 U
Ethyl acetate	6000		5 U	5 U	5 U
Ethyl Acrylate	NA		5 U	5 U	5 U
Ethyl ether	1000		5 U	5 U	5 U
Ethylbenzene	700		1 U	1 U	1 U
Freon 113	NA		5 U	5 U	5 U
Isopropylbenzene	700		2 U	2 U	2 U
Methyl acetate	7000		5 U	5 U	5 U
Methyl tert butyl ether (MTBE)	70		1 U	1 U	1 U
Methylacrylonitrile	NA		10 U	10 U	10 U
Methylcyclohexane	NA		5 U	5 U	5 U
Methylene Chloride	3		2 U	2 U	2 U
o-Xylene	NA		1 U	1 U	1 U
Styrene	100		5 U	5 U	5 U
Tetrachloroethene	1		1 U	0.73 J	1 U
Toluene	600		1 U	1 U	1 U
trans-1,2-Dichloroethene	100		1 U	1 U	1 U
trans-1,3-Dichloropropene	1		1 U	1 U	1 U
Trichloroethene	1		1 U	1 U	1 U
Trichlorofluoromethane	2000		5 U	5 U	5 U
Vinyl Chloride	1		1 U	1 U	1 U
Xylene (Total)	1000		1 U	1 U	1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

 $^{^{\}rm 3}\text{-}$ Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	WW P3 4/27/2011	XX P1 4/26/2011	XX P2 4/26/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	Valve ²	Valve ²	Valve ²
1,1,1-Trichloroethane	30		1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1		1 U	1 U	1 U
1,1,2-Trichloroethane	3		1 U	1 U	1 U
1,1-Dichloroethane	50		1 U	1 U	1 U
1,1-Dichloroethene	1		1 U	1 U	1 U
1,2,4-Trichlorobenzene	9		5 U	5 U	5 U
1,2-Dibromo-3-chloropropane	0.02		10 U	10 U	10 U
1,2-Dibromoethane	0.03		2 U	2 U	2 U
1,2-Dichlorobenzene	600		1 U	1 U	1 U
1,2-Dichloroethane	2		1 U	1 U	1 U
1,2-Dichloroethene (total)	NA		1 U	1 U	1 U
1,2-Dichloropropane	1		1 U	1 U	1 U
1,3,5-Trimethylbenzene	NA		5 U	5 U	5 U
1,3-Dichlorobenzene	600		1 U	1 U	1 U
1,4-Dichlorobenzene	75		1 U	1 U	1 U
1,4-Dioxane	NA		130 U	130 U	130 U
2-Butanone	300		10 U	10 U	10 U
2-Chlorotoluene	NA		5 U	1.2 J	5 U
2-Hexanone	100		5 U	5 U	5 U
2-Nitropropane	NA		10 U	10 U	10 U
4-Chlorotoluene	NA		5 U	5 U	5 U
4-Methyl-2-pentanone	100		5 U	5 U	5 U
Acetone	6000		10 U	10 U	10 U
Acrolein	4		50 U	50 U	50 U
Acrylonitrile	2		50 U	50 U	50 U
Benzene	1		1 U	1 U	1 U
Bromodichloromethane	1		1 U	1 U	1 U
Bromoform	4		4 U	4 U	4 U
Bromomethane	10		2 U	2 U	2 U
Carbon Disulfide	700		2 U	2 U	2 U
Carbon Tetrachloride	1		1 U	1 U	1 U
Chlorobenzene	50		1 U	1 U	1 U
Chlorobromomethane	NA		5 U	5 U	5 U
Chloroethane	100		1 U	1 U	1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality Standards	Sample ID Sample Date Unit	WW P3 4/27/2011 ug/l	XX P1 4/26/2011 ug/l	XX P2 4/26/2011 ug/l
Chemical Name	ug/l	Sample Method	Valve ²	Valve ²	Valve ²
Chloroform	70		1 U	1 U	1 U
Chloromethane	100		1 U	1 U	1 U
cis-1,2-Dichloroethene	70		1 U	1 U	1 U
cis-1,3-Dichloropropylene	1		1 U	1 U	1 U
Cyclohexane	NA		5 U	5 U	5 U
Dibromochloromethane	1		1 U	1 U	1 U
Dichlorodifluoromethane	1000		5 U	5 U	5 U
Diisopropyl ether	20000		5 U	5 U	5 U
Ethyl acetate	6000		5 U	5 U	5 U
Ethyl Acrylate	NA		5 U	5 U	5 U
Ethyl ether	1000		5 U	5.7	5 U
Ethylbenzene	700		1 U	1 U	1 U
Freon 113	NA		5 U	5 U	5 U
Isopropylbenzene	700		2 U	2 U	2 U
Methyl acetate	7000		5 U	5 U	5 U
Methyl tert butyl ether (MTBE)	70		1 U	1 U	1 U
Methylacrylonitrile	NA		10 U	10 U	10 U
Methylcyclohexane	NA		5 U	5 U	5 U
Methylene Chloride	3		2 U	2 U	2 U
o-Xylene	NA		1 U	1 U	1 U
Styrene	100		5 U	5 U	5 U
Tetrachloroethene	1		1 U	1 U	1 U
Toluene	600		1 U	1 U	1 U
trans-1,2-Dichloroethene	100		1 U	1 U	1 U
trans-1,3-Dichloropropene	1		1 U	1 U	1 U
Trichloroethene	1		1 U	1 U	1 U
Trichlorofluoromethane	2000		5 U	5 U	5 U
Vinyl Chloride	1		1 U	1 U	1 U
Xylene (Total)	1000		1 U	1 U	1 U
<i>y</i> (·,					

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

 $^{^{\}rm 3}\text{-}$ Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	XX P3 4/27/2011	YY P1 4/26/2011	YY P2 4/26/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	Valve ²	Valve ²	Valve ²
1,1,1-Trichloroethane	30		1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1		1 U	1 U	1 U
1,1,2-Trichloroethane	3		1 U	1 U	1 U
1,1-Dichloroethane	50		1 U	1 U	1 U
1,1-Dichloroethene	1		1 U	1 U	1 U
1,2,4-Trichlorobenzene	9		5 U	5 U	5 U
1,2-Dibromo-3-chloropropane	0.02		10 U	10 U	10 U
1,2-Dibromoethane	0.03		2 U	2 U	2 U
1,2-Dichlorobenzene	600		1 U	1 U	1 U
1,2-Dichloroethane	2		1 U	1 U	1 U
1,2-Dichloroethene (total)	NA		1 U	1 U	1 U
1,2-Dichloropropane	1		1 U	1 U	1 U
1,3,5-Trimethylbenzene	NA		5 U	5 U	5 U
1,3-Dichlorobenzene	600		1 U	1 U	1 U
1,4-Dichlorobenzene	75		1 U	1 U	1 U
1,4-Dioxane	NA		130 U	130 U	130 U
2-Butanone	300		10 U	10 U	10 U
2-Chlorotoluene	NA		5 U	5 U	5 U
2-Hexanone	100		5 U	5 U	5 U
2-Nitropropane	NA		10 U	10 U	10 U
4-Chlorotoluene	NA		5 U	5 U	5 U
4-Methyl-2-pentanone	100		5 U	5 U	5 U
Acetone	6000		10 U	10 U	10 U
Acrolein	4		50 U	50 U	50 U
Acrylonitrile	2		50 U	50 U	50 U
Benzene	1		1 U	1 U	1 U
Bromodichloromethane	1		1 U	1 U	1 U
Bromoform	4		4 U	4 U	4 U
Bromomethane	10		2 U	2 U	2 U
Carbon Disulfide	700		2 U	2 U	2 U
Carbon Tetrachloride	1		1 U	1 U	1 U
Chlorobenzene	50		1 U	1 U	1 U
Chlorobromomethane	NA		5 U	5 U	5 U
Chloroethane	100		1 U	1 U	1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	XX P3 4/27/2011	YY P1 4/26/2011	YY P2 4/26/2011
	Standards	Sample Date Unit	4/27/2011 ug/l	4/26/2011 ug/l	4/26/2011 ug/l
Chemical Name	ug/l	Sample Method	Valve ²	Valve ²	Valve ²
Chloroform	70		1 U	1 U	1 U
Chloromethane	100		1 U	1 U	1 U
cis-1,2-Dichloroethene	70		1 U	1 U	1 U
cis-1,3-Dichloropropylene	1		1 U	1 U	1 U
Cyclohexane	NA		5 U	5 U	5 U
Dibromochloromethane	1		1 U	1 U	1 U
Dichlorodifluoromethane	1000		5 U	5 U	5 U
Diisopropyl ether	20000		5 U	5 U	5 U
Ethyl acetate	6000		5 U	5 U	5 U
Ethyl Acrylate	NA		5 U	5 U	5 U
Ethyl ether	1000		5 U	5 U	5 U
Ethylbenzene	700		1 U	1 U	1 U
Freon 113	NA		5 U	5 U	5 U
Isopropylbenzene	700		2 U	2 U	2 U
Methyl acetate	7000		5 U	5 U	5 U
Methyl tert butyl ether (MTBE)	70		0.66 J	1 U	1 U
Methylacrylonitrile	NA		10 U	10 U	10 U
Methylcyclohexane	NA		5 U	5 U	5 U
Methylene Chloride	3		2 U	2 U	2 U
o-Xylene	NA		1 U	1 U	1 U
Styrene	100		5 U	5 U	5 U
Tetrachloroethene	1		1 U	1 U	0.45 J
Toluene	600		1 U	1 U	1 U
trans-1,2-Dichloroethene	100		1 U	1 U	1 U
trans-1,3-Dichloropropene	1		1 U	1 U	1 U
Trichloroethene	1		1 U	1 U	0.55 J
Trichlorofluoromethane	2000		5 U	5 U	5 U
Vinyl Chloride	1		1 U	1 U	1 U
Xylene (Total)	1000		1 U	1 U	1 U

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

 $^{^{\}rm 3}\text{-}$ Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	YY P3 4/26/2011	ZZ P1 4/26/2011	ZZ P2 4/26/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	Valve ²	Valve ²	Valve ²
1,1,1-Trichloroethane	30		1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1		1 U	1 U	1 U
1,1,2-Trichloroethane	3		1 U	1 U	1 U
1,1-Dichloroethane	50		1 U	1 U	1 U
1,1-Dichloroethene	1		1 U	1 U	1 U
1,2,4-Trichlorobenzene	9		5 U	5 U	5 U
1,2-Dibromo-3-chloropropane	0.02		10 U	10 U	10 U
1,2-Dibromoethane	0.03		2 U	2 U	2 U
1,2-Dichlorobenzene	600		1 U	1 U	1 U
1,2-Dichloroethane	2		1 U	1 U	1 U
1,2-Dichloroethene (total)	NA		1 U	1 U	1 U
1,2-Dichloropropane	1		1 U	1 U	1 U
1,3,5-Trimethylbenzene	NA		5 U	5 U	5 U
1,3-Dichlorobenzene	600		1 U	1 U	1 U
1,4-Dichlorobenzene	75		1 U	1 U	1 U
1,4-Dioxane	NA		130 U	130 U	130 U
2-Butanone	300		10 U	10 U	10 U
2-Chlorotoluene	NA		5 U	5 U	5 U
2-Hexanone	100		5 U	5 U	5 U
2-Nitropropane	NA		10 U	10 U	10 U
4-Chlorotoluene	NA		5 U	5 U	5 U
4-Methyl-2-pentanone	100		5 U	5 U	5 U
Acetone	6000		10 U	10 U	10 U
Acrolein	4		50 U	50 U	50 U
Acrylonitrile	2		50 U	50 U	50 U
Benzene	1		1 U	1 U	1 U
Bromodichloromethane	1		1 U	1 U	1 U
Bromoform	4		4 U	4 U	4 U
Bromomethane	10		2 U	2 U	2 U
Carbon Disulfide	700		2 U	2 U	2 U
Carbon Tetrachloride	1		1 U	1 U	1 U
Chlorobenzene	50		1 U	1 U	1 U
Chlorobromomethane	NA		5 U	5 U	5 U
Chloroethane	100		1 U	1 U	1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	GW Quality	Sample ID Sample Date	YY P3 4/26/2011	ZZ P1 4/26/2011	ZZ P2 4/26/2011
	Standards	Unit	ug/l	4/20/2011 ug/l	4/20/2011 ug/l
Chemical Name	ug/l	Sample Method	Valve ²	Valve ²	Valve ²
Chloroform	70		1 U	1 U	1 U
Chloromethane	100		1 U	1 U	1 U
cis-1,2-Dichloroethene	70		1 U	1 U	1 U
cis-1,3-Dichloropropylene	1		1 U	1 U	1 U
Cyclohexane	NA		5 U	5 U	5 U
Dibromochloromethane	1		1 U	1 U	1 U
Dichlorodifluoromethane	1000		5 U	5 U	5 U
Diisopropyl ether	20000		5 U	5 U	5 U
Ethyl acetate	6000		5 U	5 U	5 U
Ethyl Acrylate	NA		5 U	5 U	5 U
Ethyl ether	1000		5 U	5 U	5 U
Ethylbenzene	700		1 U	1 U	1 U
Freon 113	NA		5 U	5 U	5 U
Isopropylbenzene	700		2 U	2 U	2 U
Methyl acetate	7000		5 U	5 U	5 U
Methyl tert butyl ether (MTBE)	70		1 U	1 U	1 U
Methylacrylonitrile	NA		10 U	10 U	10 U
Methylcyclohexane	NA		5 U	5 U	5 U
Methylene Chloride	3		2 U	2 U	2 U
o-Xylene	NA		1 U	1 U	1 U
Styrene	100		5 U	5 U	5 U
Tetrachloroethene	1		8.4 Y	1 U	1 U
Toluene	600		1 U	1 U	1 U
trans-1,2-Dichloroethene	100		1 U	1 U	1 U
trans-1,3-Dichloropropene	1		1 U	1 U	1 U
Trichloroethene	1		1 U	1 U	1 U
Trichlorofluoromethane	2000		5 U	5 U	5 U
Vinyl Chloride	1		1 U	1 U	1 U
Xylene (Total)	1000		1 U	1 U	1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

 $^{^{\}rm 3}\text{-}$ Sample collected from peristalatic pump, result reported from SVOC analysis.

		Sample ID	ZZ P3	ZZ P4	
	GW Quality	Sample Date	4/26/2011	4/26/2011	
	Standards	Unit	ug/l	ug/l	
Chemical Name	ug/l	Sample Method	Valve ²	Valve ²	
1,1,1-Trichloroethane	30		1 U	1 U	
1,1,2,2-Tetrachloroethane	1		1 U	1 U	
1,1,2-Trichloroethane	3		1 U	1 U	
1,1-Dichloroethane	50		1 U	1 U	
1,1-Dichloroethene	1		1 U	1 U	
1,2,4-Trichlorobenzene	9		5 U	5 U	
1,2-Dibromo-3-chloropropane	0.02		10 U	10 U	
1,2-Dibromoethane	0.03		2 U	2 U	
1,2-Dichlorobenzene	600		1 U	1 U	
1,2-Dichloroethane	2		1 U	1 U	
1,2-Dichloroethene (total)	NA		1 U	1 U	
1,2-Dichloropropane	1		1 U	1 U	
1,3,5-Trimethylbenzene	NA		5 U	5 U	
1,3-Dichlorobenzene	600		1 U	1 U	
1,4-Dichlorobenzene	75		1 U	1 U	
1,4-Dioxane	NA		130 U	130 U	
2-Butanone	300		10 U	10 U	
2-Chlorotoluene	NA		5 U	5 U	
2-Hexanone	100		5 U	5 U	
2-Nitropropane	NA		10 U	10 U	
4-Chlorotoluene	NA		5 U	5 U	
4-Methyl-2-pentanone	100		5 U	5 U	
Acetone	6000		10 U	10 U	
Acrolein	4		50 U	50 U	
Acrylonitrile	2		50 U	50 U	
Benzene	1		1 U	1 U	
Bromodichloromethane	1		1 U	1 U	
Bromoform	4		4 U	4 U	
Bromomethane	10		2 U	2 U	
Carbon Disulfide	700		2 U	2 U	
Carbon Tetrachloride	1		1 U	1 U	
Chlorobenzene	50		1 U	1 U	
Chlorobromomethane	NA		5 U	5 U	
Chloroethane	100		1 U	1 U	

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

	OW	O relike	Sample ID	ZZ P3	ZZ P4	_
		Quality ndards	Sample Date Unit	4/26/2011	4/26/201	1
Chemical Name			Sample Method	ug/l Valve²	ug/l Valve²	
Chloroform		ug/l 70	Sample Method	1 U	1 U	
Chloromethane		100		1 U	1 U	
cis-1,2-Dichloroethene		70		1 U	1 U	
cis-1,3-Dichloropropylene		1		1 U	1 U	
Cyclohexane		NA		5 U	5 U	
Dibromochloromethane		1		1 U	1 U	
Dichlorodifluoromethane		1000		5 U	5 U	
Diisopropyl ether		0000		5 U	5 U	
Ethyl acetate		6000		5 U	5 U	
Ethyl Acrylate		NA		5 U	5 U	
Ethyl ether		1000		5 U	5 U	
Ethylbenzene		700		1 U	1 U	
Freon 113		NA		5 U	5 U	
Isopropylbenzene		700		2 U	2 U	
Methyl acetate		7000		5 U	5 U	
Methyl tert butyl ether (MTBE		70		1 U	1 U	
Methylacrylonitrile		NA		10 U	10 U	
Methylcyclohexane		NA		5 U	5 U	
Methylene Chloride		3		2 U	2 U	
o-Xylene		NA		1 U	1 U	
Styrene		100		5 U	5 U	
Tetrachloroethene		1		1 U	1 U	
Toluene		600		1 U	1 U	
trans-1,2-Dichloroethene		100		1 U	1 U	
trans-1,3-Dichloropropene		1		1 U	1 U	
Trichloroethene		1		1 U	1 U	
Trichlorofluoromethane	2	2000		5 U	5 U	
Vinyl Chloride	-	1		1 U	1 U	
Xylene (Total)		1000		1 U	1 U	
7,510.15 (1.512.)						
	NOTEC: II - n.	at datastad	L satimated value	NIA no annlia	abla aritaria N	

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate,

Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

¹ - Sampled from tap inline with pump.

² - Valved tubing sampling system.

³- Sample collected from peristalatic pump, result reported from SVOC analysis.

		Sample ID	01-MW-01	01-MW-02	01-MW-03
	GW Quality	Sample Date	5/18/2011	5/18/2011	5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
1,2,4,5-Tetrachlorobenzene	NA		2.1 U	2.1 U	2 U
1,2-Diphenylhydrazine	20		1.1 U	1 U	1 U
1,4-Naphthoquinone	NA		5.3 U	5.2 U	5 U
2,4,5-Trichlorophenol	700		5.3 U	5.2 U	5 U
2,4,6-Trichlorophenol	20		5.3 U	5.2 U	5 U
2,4-Dichlorophenol	20		2.5 J	5.2 U	5 U
2,4-Dimethylphenol	100		5.3 U	76.2	13.1
2,4-Dinitrophenol	40		21 U	21 U	20 U
2,4-Dinitrotoluene	NA		2.1 U	4.7	2 U
2,6-Dinitrotoluene	10		2.1 U	2.1 U	2 U
2-Chloronaphthalene	600		2.1 U	2.1 U	2 U
2-Chloronitrobenzene	NA		2.1 U	2.1 U	2 U
2-Chlorophenol	40		5.3 U	5.2 U	5 U
2-Methylnaphthalene	100		1.1 U	24.4	31.7
2-Methylphenol	5		2.1 U	9.4 Y	12.8 Y
2-Nitroaniline	100		5.3 U	5.2 U	5 U
2-Nitrophenol	100		5.3 U	5.2 U	5 U
3 & 4-Methylphenol	5		2.1 U	27.5 Y	26.4 Y
3,3'-Dichlorobenzidine	30		5.3 U	5.2 U	5 U
3-Nitroaniline	100		5.3 U	5.2 U	5 U
4,6-Dinitro-2-Methylphenol	100		21 U	21 U	20 U
4-Aminobiphenyl	NA		5.3 U	5.2 U	5 U
4-Bromophenyl Phenyl Ether	100		2.1 U	2.1 U	2 U
4-chloro-3-Methyl Phenol	100		5.3 U	5.2 U	5 U
4-Chloroaniline	30		5.3 U	5.2 U	5 U
4-Chlorophenyl Phenyl Ether	100		2.1 U	2.1 U	2 U
4-Nitroaniline	100		5.3 U	5.2 U	5 U
4-Nitrophenol	100		11 U	10 U	10 U
Acenaphthene	400		1.1 U	1 U	1 U
Acenaphthylene	100		1.1 U	1 U	1 U
Acetophenone	700		0.57 J	2780 Y	761 Y
Aniline	6		2.6	33.3 Y	2 U
Anthracene	2000		1.1 U	1 U	1 U
Atrazine	3		5.3 U	5.2 U	5 U
Benzaldehyde	NA		5.3 U	5.2 U	5 U
Benzidine	20		21 U	21 U	20 U
Benzo(a)Anthracene	0.1		0.11 U	0.1 U	0.1 U
Benzo(a)Pyrene	0.1		0.11 U	0.1 U	0.1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

		Sample ID	01-MW-01	01-MW-02	01-MW-03
	GW Quality	Sample Date	5/18/2011	5/18/2011	5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l		-		_
Benzo(b)Fluoranthene.	0.2		0.11 U	0.1 U	0.1 U
Benzo(g,h,i)Perylene	100		1.1 U	1 U	1 U
Benzo(k)Fluoranthene	0.5		0.11 U	0.1 U	0.1 U
Benzoic Acide	30000		21 U	2090	806
Benzyl Alcohol	2000		2.1 U	2.1 U	4
Biphenyl	400		1.1 U	0.95 J	4.1
bis(2-Chloroethoxy)Methane	100		2.1 U	2.1 U	2 U
bis(2-Chloroethyl)Ether	7		2.1 U	2.1 U	2 U
bis(2-Chloroisopropyl)Ether	300		2.1 U	2.1 U	2 U
bis(2-Ethylhexyl)Phthalate	3		2.1 U	1.6 J	2 U
Butyl Benzyl Phthalate	100		2.1 U	2.1 U	2 U
Caprolactam	NA		17.7	2.1 U	2 U
Carbazole	100		1.1 U	1 U	1 U
Catechol	NA		11 U	10 U	10 U
Chlorophenols	NA		5.3 U	5.2 U	5 U
Chrysene	5		1.1 U	1 U	1 U
Dibenzo(a,h)Anthracene	0.3		0.11 U	0.1 U	0.1 U
Dibenzofuran	100		5.3 U	5.2 U	1.1 J
Diethyl Phthalate	6000		2.1 U	2.1 U	2 U
Dimethyl Phthalate	100		2.1 U	2.6	2 U
di-n-Butyl Phthalate	700		2.1 U	2.1 U	2 U
di-n-Octyl Phthalate	100		2.1 U	2.1 U	2 U
Diphenylamine	200		5.3 U	5.2 U	5 U
Fluoranthene	300		1.1 U	1 U	1 U
Fluorene	300		1.1 U	1 U	1 U
Hexachlorobenzene	0.02		0.021 U	0.021 U	0.02 U
Hexachlorobutadiene	1		1.1 U	1 U	1 U
Hexachlorocyclopentadiene	40		21 U	21 U	20 U
Hexachloroethane	7		2.1 U	2.1 U	2 U
Hydroquinone	NA		11 U	10 U	57.5
Indeno(1,2,3-Cd)Pyrene	0.2		0.11 U	0.1 U	0.1 U
Isophorone	40		2.1 U	2.1 U	2 U
Methanamine, N-Methyl-N-Nitrosos	0.8		2.1 U	2.1 U	2 U
Naphthalene	300		17.2	2070 Y	5010 Y
Nitrobenzene	6		2.1 U	431 Y	7770 Y
n-Nitrosodiethylamine	NA		5.3 U	5.2 U	5 U
n-Nitrosodi-n-Butylamine	NA		5.3 U	5.2 U	5 U
n-Nitroso-di-n-Propylamine	10		2.1 U	2.1 U	2 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

		Sample ID	01-MW-01	01-MW-02	01-MW-03
	GW Quality	Sample Date	5/18/2011	5/18/2011	5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
n-Nitrosodiphenylamine	10		5.3 U	5.2 U	5 U
n-Nitrosomethylethylamine	NA		5.3 U	5.2 U	5 U
n-Nitrosomorpholine	NA		5.3 U	5.2 U	5 U
n-Nitrosopiperidine	NA		5.3 U	5.2 U	5 U
n-Nitrosopyrrolidine	NA		5.3 U	5.2 U	5 U
o-Chloroaniline	NA		5.3 U	5.2 U	5 U
o-Toluidine	NA		5.3 U	5.2 U	5 U
Pentachlorobenzene	NA		5.3 U	5.2 U	5 U
Pentachlorophenol	0.3		0.32 U	0.31 U	0.3 U
Phenanthrene	100		1.1 U	1 U	1 U
Phenol	2000		2.7	64.9	84.4
Pyrene	200		1.1 U	1 U	1 U
Pyridine	NA		2.1 U	41.2	128

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality	Sample ID Sample Date	19R 4/28/2011	28R 4/28/2011	34R 4/28/2011
Chemical Name	Standards ug/l	Unit	ug/l	ug/l	ug/l
1,2,4,5-Tetrachlorobenzene	NA				
1,2-Diphenylhydrazine	20				
1,4-Naphthoquinone	NA				
2,4,5-Trichlorophenol	700		25 U	5 U	5 U
2,4,6-Trichlorophenol	20		25 U	5 U	5 U
2,4-Dichlorophenol	20		25 U	5 U	5 U
2,4-Dimethylphenol	100		166 Y	5 U	5 U
2,4-Dinitrophenol	40		100 U	20 U	20 U
2,4-Dinitrotoluene	NA		10 U	2 U	2 U
2,6-Dinitrotoluene	10		10 U	2 U	2 U
2-Chloronaphthalene	600		7.7 J	2 U	2 U
2-Chloronitrobenzene	NA				
2-Chlorophenol	40		25 U	5 U	5 U
2-Methylnaphthalene	100		75.7	1 U	1 U
2-Methylphenol	5		46.9 Y	2 U	2 U
2-Nitroaniline	100		25 U	5 U	5 U
2-Nitrophenol	100		25 U	5 U	5 U
3 & 4-Methylphenol	5		194 Y	2 U	2 U
3,3'-Dichlorobenzidine	30		25 U	5 U	5 U
3-Nitroaniline	100		25 U	5 U	5 U
4,6-Dinitro-2-Methylphenol	100		100 U	20 U	20 U
4-Aminobiphenyl	NA				
4-Bromophenyl Phenyl Ether	100		10 U	2 U	2 U
4-chloro-3-Methyl Phenol	100		25 U	5 U	5 U
4-Chloroaniline	30		25 U	5 U	5 U
4-Chlorophenyl Phenyl Ether	100		10 U	2 U	2 U
4-Nitroaniline	100		25 U	5 U	5 U
4-Nitrophenol	100		50 U	10 U	10 U
Acenaphthene	400			0.187	16.6
Acenaphthylene	100		0.1 U	0.1 U	0.1 U
Acetophenone	700				
Aniline	6		74 Y	10.3 Y	10.5 Y
Anthracene	2000		0.723	0.1 U	5.6
Atrazine	3				
Benzaldehyde	NA				
Benzidine	20				
Benzo(a)Anthracene	0.1		0.1 U	0.1 U	0.1 U
Benzo(a)Pyrene	0.1		0.1 U	0.1 U	0.1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality	Sample ID Sample Date	19R 4/28/2011	28R 4/28/2011	34R 4/28/2011
	Standards	Unit	4/26/2011 ug/l	4/28/2011 ug/l	4/28/2011 ug/l
Chemical Name	ug/l			~ y .	~
Benzo(b)Fluoranthene.	0.2		0.1 U	0.1 U	0.1 U
Benzo(g,h,i)Perylene	100		0.1 U	0.1 U	0.1 U
Benzo(k)Fluoranthene	0.5		0.1 U	0.1 U	0.1 U
Benzoic Acide	30000				
Benzyl Alcohol	2000				
Biphenyl	400				
bis(2-Chloroethoxy)Methane	100		10 U	2 U	2 U
bis(2-Chloroethyl)Ether	7		10 U	2 U	2 U
bis(2-Chloroisopropyl)Ether	300		10 U	2 U	2 U
bis(2-Ethylhexyl)Phthalate	3		418 Y	2 U	3.8 Y
Butyl Benzyl Phthalate	100		10 U	2 U	2 U
Caprolactam	NA				
Carbazole	100		43.5	1 U	1 U
Catechol	NA				
Chlorophenols	NA				
Chrysene	5		0.1 U	0.1 U	0.1 U
Dibenzo(a,h)Anthracene	0.3		0.1 U	0.1 U	0.1 U
Dibenzofuran	100		16.6 J	5 U	11.1
Diethyl Phthalate	6000		10 U	2 U	2 U
Dimethyl Phthalate	100		10 U	2 U	2 U
di-n-Butyl Phthalate	700		10 U	2 U	2 U
di-n-Octyl Phthalate	100		10 U	2 U	2 U
Diphenylamine	200				
Fluoranthene	300		0.0963 J	0.1 U	0.1 U
Fluorene	300		4.62	0.1 U	1.88
Hexachlorobenzene	0.02		0.02 U	0.02 U	0.02 U
Hexachlorobutadiene	1		5 U	1 U	1 U
Hexachlorocyclopentadiene	40		100 U	20 U	20 U
Hexachloroethane	7		10 U	2 U	2 U
Hydroquinone	NA				
Indeno(1,2,3-Cd)Pyrene	0.2		0.1 U	0.1 U	0.1 U
Isophorone	40		10 U	2 U	2 U
Methanamine, N-Methyl-N-Nitrosc	0.8				
Naphthalene	300		4650 Y	2.95	1.14
Nitrobenzene	6		10 U	2 U	2 U
n-Nitrosodiethylamine	NA				
n-Nitrosodi-n-Butylamine	NA				
n-Nitroso-di-n-Propylamine	10		10 U	2 U	2 U
NOTEC: 1					

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality Standards	Sample ID Sample Date Unit	19R 4/28/2011 ug/l	28R 4/28/2011 ug/l	34R 4/28/2011 ug/l
Chemical Name	ug/l				
n-Nitrosodiphenylamine	10		602 Y	1.4 J	71 Y
n-Nitrosomethylethylamine	NA				
n-Nitrosomorpholine	NA				
n-Nitrosopiperidine	NA				
n-Nitrosopyrrolidine	NA				
o-Chloroaniline	NA				
o-Toluidine	NA				
Pentachlorobenzene	NA				
Pentachlorophenol	0.3		0.3 U	0.3 U	0.3 U
Phenanthrene	100		1.92	0.1 U	0.79 J
Phenol	2000		54.5	2 U	2 U
Pyrene	200		0.108	0.1 U	0.1 U
Pyridine	NA				

	GW Quality	Sample ID Sample Date	38R 4/29/2011	42R 4/30/2011	AAA 4/29/2011
Chemical Name	Standards ug/l	Unit	ug/l	ug/l	ug/l
1,2,4,5-Tetrachlorobenzene	NA		2 U	2.2 U	2 U
1,2-Diphenylhydrazine	20		1 U	1.1 U	1 U
1,4-Naphthoquinone	NA		5 U	5.4 U	5 U
2,4,5-Trichlorophenol	700		5 U	5.4 U	5 U
2,4,6-Trichlorophenol	20		5 U	5.4 U	5 U
2,4-Dichlorophenol	20		5 U	5.4 U	5 U
2,4-Dimethylphenol	100		3 J	2.6 J	5 U
2,4-Dinitrophenol	40		20 U	22 U	20 U
2,4-Dinitrotoluene	NA		2 U	2.2 U	2 U
2,6-Dinitrotoluene	10		2 U	2.2 U	2 U
2-Chloronaphthalene	600		20.2	2.2 U	2 U
2-Chloronitrobenzene	NA		2 U	2.2 U	2 U
2-Chlorophenol	40		1.4 J	1.4 J	5 U
2-Methylnaphthalene	100		25.2	1.1 U	1 U
2-Methylphenol	5		2 U	2.2 U	2 U
2-Nitroaniline	100		5 U	5.4 U	5 U
2-Nitrophenol	100		5 U	5.4 U	5 U
3 & 4-Methylphenol	5		2 U	2.2 U	2 U
3,3'-Dichlorobenzidine	30		5 U	5.4 U	5 U
3-Nitroaniline	100		5 U	5.4 U	5 U
4,6-Dinitro-2-Methylphenol	100		20 U	22 U	20 U
4-Aminobiphenyl	NA		5 U	5.4 U	5 U
4-Bromophenyl Phenyl Ether	100		2 U	2.2 U	2 U
4-chloro-3-Methyl Phenol	100		5 U	5.4 U	5 U
4-Chloroaniline	30		5.3	8.3	0.87 J
4-Chlorophenyl Phenyl Ether	100		2 U	2.2 U	2 U
4-Nitroaniline	100		5 U	5.4 U	5 U
4-Nitrophenol	100		10 U	11 U	10 U
Acenaphthene	400		15.5	28.1	1 U
Acenaphthylene	100		1 U	1.1 U	1 U
Acetophenone	700		2 U	2.2 U	2 U
Aniline	6		176 Y	56.9 Y	7.3 Y
Anthracene	2000		1 U	0.93 J	1 U
Atrazine	3		5 U	5.4 U	5 U
Benzaldehyde	NA		5 U	5.4 U	5 U
Benzidine	20		20 U	22 U	8.3 J
Benzo(a)Anthracene	0.1		1 U		1 U
Benzo(a)Pyrene	0.1		1 U		1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality	Sample ID Sample Date	38R 4/29/2011	42R 4/30/2011	AAA 4/29/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
Benzo(b)Fluoranthene.	0.2		1 U		1 U
Benzo(g,h,i)Perylene	100		1 U	1.1 U	1 U
Benzo(k)Fluoranthene	0.5		1 U		1 U
Benzoic Acide	30000		20 U	22 U	20 U
Benzyl Alcohol	2000		2 U	2.2 U	2 U
Biphenyl	400		12.4	10.3	1 U
bis(2-Chloroethoxy)Methane	100		2 U	2.2 U	2 U
bis(2-Chloroethyl)Ether	7		2 U	2.2 U	2 U
bis(2-Chloroisopropyl)Ether	300		2 U	2.2 U	2 U
bis(2-Ethylhexyl)Phthalate	3		2 U	2.2 U	2 U
Butyl Benzyl Phthalate	100		2 U	2.2 U	2 U
Caprolactam	NA		2 U	2.2 U	2 U
Carbazole	100		1 U	1.1 U	1 U
Catechol	NA		10 U	11 U	10 U
Chlorophenols	NA		5 U	5.4 U	5 U
Chrysene	5		1 U	1.1 U	1 U
Dibenzo(a,h)Anthracene	0.3		1 U		1 U
Dibenzofuran	100		11.6	13	5 U
Diethyl Phthalate	6000		2 U	2.2 U	2 U
Dimethyl Phthalate	100		2 U	2.2 U	2 U
di-n-Butyl Phthalate	700		2 U	2.2 U	2 U
di-n-Octyl Phthalate	100		2 U	2.2 U	2 U
Diphenylamine	200		5 U	5.4 U	5 U
Fluoranthene	300		1 U	1.1 U	1 U
Fluorene	300		6.3	1.1 U	1 U
Hexachlorobenzene	0.02		1 U		1 U
Hexachlorobutadiene	1		1 U	1.1 U	1 U
Hexachlorocyclopentadiene	40		20 U	22 U	20 U
Hexachloroethane	7		2 U	2.2 U	2 U
Hydroquinone	, NA		10 U	11 U	10 U
Indeno(1,2,3-Cd)Pyrene	0.2		1 U		1 U
Isophorone	40		2 U	2.2 U	2 U
Methanamine, N-Methyl-N-Nitrosc	0.8		2 U	2.2 U	2 U
Naphthalene	300		934 Y	9.4	0.56 N
Nitrobenzene	6		2 U	2.2 U	2 U
n-Nitrosodiethylamine	NA NA		5 U	5.4 U	5 U
n-Nitrosodietriylamine	NA		5 U	5.4 U	5 U
n-Nitrosodi-n-Butylamine	10		2 U	2.2 U	2 U
n-Nitroso-di-n-Propylamine				Z.Z U	20

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

Chemical Name	GW Quality Standards ug/l	Sample ID Sample Date Unit	38R 4/29/2011 ug/l	42R 4/30/2011 ug/l	AAA 4/29/2011 ug/l
n-Nitrosodiphenylamine	10		107 Y	58.6 Y	5.1
n-Nitrosomethylethylamine	NA NA		5 U	5.4 U	5 U
n-Nitrosomorpholine	NA NA		5 U	5.4 U	5 U
n-Nitrosopiperidine	NA NA		5 U	5.4 U	5 U
n-Nitrosopyrrolidine	NA NA		5 U	5.4 U	5 U
o-Chloroaniline	NA NA		5 U	5.4 U	5 U
o-Toluidine	NA NA		36.1	4.5 J	0.84 J
Pentachlorobenzene	NA NA		5 U	5.4 U	5 U
	0.3		10 U	5.4 U 	10 U
Pentachlorophenol Phenanthrene	100			2.2	
Phenol	2000		1.6 2 U	2.2 2.2 U	1 U 2 U
Pyrene	200 NA		1 U	1.1 U	1 U
Pyridine	NA NA		2 U	2.2 U	2 U

	GW Quality	Sample ID Sample Date	CCC-R 4/30/2011	CCC-R DUP 4/30/2011	EEE-R 4/30/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l		J	J	J
1,2,4,5-Tetrachlorobenzene	NA		2 U	2 U	2 U
1,2-Diphenylhydrazine	20		1 U	1 U	1 U
1,4-Naphthoquinone	NA		5 U	5 U	5 U
2,4,5-Trichlorophenol	700		5 U	5 U	5 U
2,4,6-Trichlorophenol	20		5 U	5 U	5 U
2,4-Dichlorophenol	20		5 U	5 U	5 U
2,4-Dimethylphenol	100		5 U	5 U	5 U
2,4-Dinitrophenol	40		20 U	20 U	20 U
2,4-Dinitrotoluene	NA		2 U	2 U	2 U
2,6-Dinitrotoluene	10		2 U	2 U	2 U
2-Chloronaphthalene	600		2 U	2 U	2 U
2-Chloronitrobenzene	NA		2 U	2 U	2 U
2-Chlorophenol	40		5 U	5 U	5 U
2-Methylnaphthalene	100		1 U	1 U	1 U
2-Methylphenol	5		2 U	2 U	2 U
2-Nitroaniline	100		5 U	5 U	5 U
2-Nitrophenol	100		5 U	5 U	5 U
3 & 4-Methylphenol	5		2 U	2 U	2 U
3,3'-Dichlorobenzidine	30		5 U	5 U	5 U
3-Nitroaniline	100		5 U	5 U	5 U
4,6-Dinitro-2-Methylphenol	100		20 U	20 U	20 U
4-Aminobiphenyl	NA		5 U	5 U	5 U
4-Bromophenyl Phenyl Ether	100		2 U	2 U	2 U
4-chloro-3-Methyl Phenol	100		5 U	5 U	5 U
4-Chloroaniline	30		5 U	5 U	5 U
4-Chlorophenyl Phenyl Ether	100		2 U	2 U	2 U
4-Nitroaniline	100		5 U	5 U	5 U
4-Nitrophenol	100		10 U	10 U	10 U
Acenaphthene	400		1 U	1 U	1 U
Acenaphthylene	100		1 U	1 U	1 U
Acetophenone	700		2 U	2 U	2 U
Aniline	6		2 U	2 U	2 U
Anthracene	2000		1 U	1 U	1 U
Atrazine	3		5 U	5 U	5 U
Benzaldehyde	NA		5 U	5 U	5 U
Benzidine	20		20 U	20 U	20 U
Benzo(a)Anthracene	0.1		0.1 U	0.1 U	0.1 U
Benzo(a)Pyrene	0.1		0.1 U	0.1 U	0.1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality	Sample ID Sample Date	CCC-R 4/30/2011	CCC-R DUP 4/30/2011	EEE-R 4/30/2011
Chemical Name	Standards ug/l	Unit	ug/l	ug/l	ug/l
Benzo(b)Fluoranthene.	0.2		0.1 U	0.1 U	0.1 U
Benzo(g,h,i)Perylene	100		1 U	1 U	1 U
Benzo(k)Fluoranthene	0.5		0.1 U	0.1 U	0.1 U
Benzoic Acide	30000		20 U	20 U	20 U
Benzyl Alcohol	2000		2 U	2 U	2 U
Biphenyl	400		1 U	1 U	1 U
bis(2-Chloroethoxy)Methane	100		2 U	2 U	2 U
bis(2-Chloroethyl)Ether	7		2 U	2 U	2 U
bis(2-Chloroisopropyl)Ether	300		2 U	2 U	2 U
bis(2-Ethylhexyl)Phthalate	3		2 U	2 U	2 U
Butyl Benzyl Phthalate	100		2 U	2 U	2 U
Caprolactam	NA		2 U	2 U	2 U
Carbazole	100		1 U	1 U	1 U
Catechol	NA		10 U	10 U	10 U
Chlorophenols	NA		5 U	5 U	5 U
Chrysene	5		1 U	1 U	1 U
Dibenzo(a,h)Anthracene	0.3		0.1 U	0.1 U	0.1 U
Dibenzofuran	100		5 U	5 U	5 U
Diethyl Phthalate	6000		2 U	2 U	2 U
Dimethyl Phthalate	100		2 U	2 U	2 U
di-n-Butyl Phthalate	700		2 U	2 U	2 U
di-n-Octyl Phthalate	100		2 U	2 U	2 U
Diphenylamine	200		5 U	5 U	5 U
Fluoranthene	300		1 U	1 U	1 U
Fluorene	300		1 U	1 U	1 U
Hexachlorobenzene	0.02		0.02 U	0.02 U	0.02 U
Hexachlorobutadiene	1		1 U	1 U	1 U
Hexachlorocyclopentadiene	40		20 U	20 U	20 U
Hexachloroethane	7		2 U	2 U	2 U
Hydroquinone	NA		10 U	10 U	10 U
Indeno(1,2,3-Cd)Pyrene	0.2		0.1 U	0.1 U	0.1 U
Isophorone	40		2 U	2 U	2 U
Methanamine, N-Methyl-N-Nitros	0.8		2 U	2 U	2 U
Naphthalene	300		1 U	1 U	1 U
Nitrobenzene	6		2 U	2 U	2 U
n-Nitrosodiethylamine	NA		5 U	5 U	5 U
n-Nitrosodi-n-Butylamine	NA		5 U	5 U	5 U
n-Nitroso-di-n-Propylamine	10		2 U	2 U	2 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality Standards	Sample ID Sample Date Unit	CCC-R 4/30/2011 ug/l	CCC-R DUP 4/30/2011 ug/l	EEE-R 4/30/2011 ug/l
Chemical Name	ug/l	5	∝g/·	<i>∝</i> g/.	u g/.
n-Nitrosodiphenylamine	10		5 U	5 U	5 U
n-Nitrosomethylethylamine	NA		5 U	5 U	5 U
n-Nitrosomorpholine	NA		5 U	5 U	5 U
n-Nitrosopiperidine	NA		5 U	5 U	5 U
n-Nitrosopyrrolidine	NA		5 U	5 U	5 U
o-Chloroaniline	NA		5 U	5 U	5 U
o-Toluidine	NA		5 U	5 U	5 U
Pentachlorobenzene	NA		5 U	5 U	5 U
Pentachlorophenol	0.3		0.3 U	0.3 U	0.3 U
Phenanthrene	100		1 U	1 U	1 U
Phenol	2000		2 U	2 U	2 U
Pyrene	200		1 U	1 U	1 U
Pyridine	NA		2 U	2 U	2 U
3					

	GW Quality	Sample ID Sample Date	FLOD-W1S 5/18/2011	FLOD-W2BS 5/19/2011	FLOD-W2S 5/19/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
1,2,4,5-Tetrachlorobenzene	NA		2 U	2 U	2 U
1,2-Diphenylhydrazine	20		1 U	1 U	1 U
1,4-Naphthoquinone	NA		5 U	5 U	5 U
2,4,5-Trichlorophenol	700		5 U	5 U	5 U
2,4,6-Trichlorophenol	20		5 U	5 U	5 U
2,4-Dichlorophenol	20		5 U	5 U	5 U
2,4-Dimethylphenol	100		5.2	5 U	5 U
2,4-Dinitrophenol	40		20 U	20 U	20 U
2,4-Dinitrotoluene	NA		2 U	2 U	2 U
2,6-Dinitrotoluene	10		2 U	2 U	2 U
2-Chloronaphthalene	600		2 U	2 U	2 U
2-Chloronitrobenzene	NA		2 U	2 U	2 U
2-Chlorophenol	40		5 U	5 U	5 U
2-Methylnaphthalene	100		7.6	1 U	1 U
2-Methylphenol	5		3.6	2 U	2 U
2-Nitroaniline	100		5 U	5 U	5 U
2-Nitrophenol	100		5 U	5 U	5 U
3 & 4-Methylphenol	5		9.9 Y	2 U	2 U
3,3'-Dichlorobenzidine	30		5 U	5 U	5 U
3-Nitroaniline	100		5 U	5 U	5 U
4,6-Dinitro-2-Methylphenol	100		20 U	20 U	20 U
4-Aminobiphenyl	NA		5 U	5 U	5 U
4-Bromophenyl Phenyl Ether	100		2 U	2 U	2 U
4-chloro-3-Methyl Phenol	100		5 U	5 U	5 U
4-Chloroaniline	30		5 U	5 U	5 U
4-Chlorophenyl Phenyl Ether	100		2 U	2 U	2 U
4-Nitroaniline	100		5 U	5 U	5 U
4-Nitrophenol	100		10 U	10 U	10 U
Acenaphthene	400		1 U	1 U	1 U
Acenaphthylene	100		1 U	1 U	1 U
Acetophenone	700		1100 Y	2 U	2 U
Aniline	6		328 Y	2 R	2 R
Anthracene	2000		1 U	1 U	1 U
Atrazine	3		5 U	5 U	5 U
Benzaldehyde	NA		5 U	5 U	5 U
Benzidine	20		20 U	20 R	20 R
Benzo(a)Anthracene	0.1		0.1 U	0.1 U	0.1 U
Benzo(a)Pyrene	0.1		0.1 U	0.1 U	0.1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality	Sample ID Sample Date	FLOD-W1S 5/18/2011	FLOD-W2BS 5/19/2011	FLOD-W2S 5/19/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l		•	•	•
Benzo(b)Fluoranthene.	0.2		0.1 U	0.1 U	0.1 U
Benzo(g,h,i)Perylene	100		1 U	1 U	1 U
Benzo(k)Fluoranthene	0.5		0.1 U	0.1 U	0.1 U
Benzoic Acide	30000		386 J	20 U	20 U
Benzyl Alcohol	2000		2.6	2 U	2 U
Biphenyl	400		0.79 J	1 U	1 U
bis(2-Chloroethoxy)Methane	100		2 U	2 U	2 U
bis(2-Chloroethyl)Ether	7		2 U	2 U	2 U
bis(2-Chloroisopropyl)Ether	300		2 U	2 U	2 U
bis(2-Ethylhexyl)Phthalate	3		2 U	2 U	2 U
Butyl Benzyl Phthalate	100		2 U	2 U	2 U
Caprolactam	NA		2 U	2 U	2 U
Carbazole	100		1 U	1 U	1 U
Catechol	NA		10 U	10 U	10 U
Chlorophenols	NA		5 U	5 U	5 U
Chrysene	5		1 U	1 U	1 U
Dibenzo(a,h)Anthracene	0.3		0.1 U	0.1 U	0.1 U
Dibenzofuran	100		5 U	5 U	5 U
Diethyl Phthalate	6000		2 U	2 U	2 U
Dimethyl Phthalate	100		2 U	2 U	2 U
di-n-Butyl Phthalate	700		2 U	2 U	2 U
di-n-Octyl Phthalate	100		2 U	2 U	2 U
Diphenylamine	200		5 U	5 U	5 U
Fluoranthene	300		1 U	1 U	1 U
Fluorene	300		1 U	1 U	1 U
Hexachlorobenzene	0.02		0.02 U	0.02 U	0.02 U
Hexachlorobutadiene	1		1 U	1 U	1 U
Hexachlorocyclopentadiene	40		20 U	20 U	20 U
Hexachloroethane	7		2 U	2 U	2 U
Hydroquinone	NA		10 U	10 U	10 U
Indeno(1,2,3-Cd)Pyrene	0.2		0.1 U	0.1 U	0.1 U
Isophorone	40		2 U	2 U	2 U
Methanamine, N-Methyl-N-Nitros	0.8		2 U	2 U	2 U
Naphthalene	300		575 Y	1 U	78.4
Nitrobenzene	6		64.6 Y	2 U	2 U
n-Nitrosodiethylamine	NA		5 U	5 U	5 U
n-Nitrosodi-n-Butylamine	NA		5 U	5 U	5 U
n-Nitroso-di-n-Propylamine	10		2 U	2 U	2 U

	GW Quality Standards	Sample ID Sample Date Unit	FLOD-W1S 5/18/2011 ug/l	FLOD-W2BS 5/19/2011 ug/l	FLOD-W2S 5/19/2011 ug/l
Chemical Name	ug/l		_	_	_
n-Nitrosodiphenylamine	10		5 U	5 U	5 U
n-Nitrosomethylethylamine	NA		5 U	5 U	5 U
n-Nitrosomorpholine	NA		5 U	5 U	5 U
n-Nitrosopiperidine	NA		5 U	5 U	5 U
n-Nitrosopyrrolidine	NA		5 U	5 U	5 U
o-Chloroaniline	NA		5 U	5 U	5 U
o-Toluidine	NA		5 U	5 U	5 U
Pentachlorobenzene	NA		5 U	5 U	5 U
Pentachlorophenol	0.3		0.3 U	0.3 U	0.3 U
Phenanthrene	100		1 U	1 U	1 U
Phenol	2000		41.9	2 U	4.6
Pyrene	200		1 U	1 U	1 U
Pyridine	NA		145	2 R	2 R

	GW Quality	Sample ID Sample Date	III 4/29/2011	KKK 4/29/2011	MW-1A 4/30/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l		_		_
1,2,4,5-Tetrachlorobenzene	NA		2 U	2 U	10 U
1,2-Diphenylhydrazine	20		1 U	1 U	5 U
1,4-Naphthoquinone	NA		5 U	5 U	25 U
2,4,5-Trichlorophenol	700		5 U	5 U	25 U
2,4,6-Trichlorophenol	20		5 U	5 U	25 U
2,4-Dichlorophenol	20		5 U	5 U	25 U
2,4-Dimethylphenol	100		5 U	5 U	53.1
2,4-Dinitrophenol	40		20 U	20 U	100 U
2,4-Dinitrotoluene	NA		2 U	2 U	10 U
2,6-Dinitrotoluene	10		2 U	2 U	10 U
2-Chloronaphthalene	600		2 U	2 U	10 U
2-Chloronitrobenzene	NA		2 U	2 U	10 U
2-Chlorophenol	40		5 U	5 U	25 U
2-Methylnaphthalene	100		1 U	1 U	39.6
2-Methylphenol	5		2 U	2 U	59.3 Y
2-Nitroaniline	100		5 U	5 U	25 U
2-Nitrophenol	100		5 U	5 U	25 U
3 & 4-Methylphenol	5		2 U	2 U	10 U
3,3'-Dichlorobenzidine	30		5 U	5 U	25 U
3-Nitroaniline	100		5 U	5 U	606 Y
4,6-Dinitro-2-Methylphenol	100		20 U	20 U	100 U
4-Aminobiphenyl	NA		5 U	5 U	25 U
4-Bromophenyl Phenyl Ether	100		2 U	2 U	10 U
4-chloro-3-Methyl Phenol	100		5 U	5 U	25 U
4-Chloroaniline	30		5 U	5 U	41 Y
4-Chlorophenyl Phenyl Ether	100		2 U	2 U	10 U
4-Nitroaniline	100		5 U	5 U	25 U
4-Nitrophenol	100		10 U	10 U	50 U
Acenaphthene	400		1 U	1 U	2.4 J
Acenaphthylene	100		1 U	1 U	5 U
Acetophenone	700		2 U	2 U	10 U
Aniline	6		2 U	2 U	131000 Y
Anthracene	2000		1 U	1 U	5 U
Atrazine	3		5 U	5 U	25 U
Benzaldehyde	NA		5 U	5 U	25 U
Benzidine	20		20 U	20 U	100 U
Benzo(a)Anthracene	0.1		1 U	0.65 J Y	5 U
Benzo(a)Pyrene	0.1		1 U	1 U	5 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality	Sample ID Sample Date	III 4/29/2011	KKK 4/29/2011	MW-1A 4/30/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l		- 3 -	- 3	- 3
Benzo(b)Fluoranthene.	0.2		1 U	1.5 Y	5 U
Benzo(g,h,i)Perylene	100		1 U	1 U	5 U
Benzo(k)Fluoranthene	0.5		1 U	0.59 J Y	5 U
Benzoic Acide	30000		20 U	20 U	100 U
Benzyl Alcohol	2000		2 U	2 U	10 U
Biphenyl	400		1 U	1 U	5 U
bis(2-Chloroethoxy)Methane	100		2 U	2 U	10 U
bis(2-Chloroethyl)Ether	7		2 U	2 U	10 U
bis(2-Chloroisopropyl)Ether	300		2 U	2 U	10 U
bis(2-Ethylhexyl)Phthalate	3		2 U	2.2	10 U
Butyl Benzyl Phthalate	100		2 U	2 U	10 U
Caprolactam	NA		2 U	2 U	10 U
Carbazole	100		1 U	1 U	5 U
Catechol	NA		10 U	10 U	50 U
Chlorophenols	NA		5 U	5 U	25 U
Chrysene	5		1 U	0.54 J	5 U
Dibenzo(a,h)Anthracene	0.3		1 U	1 U	5 U
Dibenzofuran	100		5 U	5 U	25 U
Diethyl Phthalate	6000		2 U	2 U	10 U
Dimethyl Phthalate	100		2 U	2 U	10 U
di-n-Butyl Phthalate	700		2 U	2 U	10 U
di-n-Octyl Phthalate	100		2 U	2 U	10 U
Diphenylamine	200		5 U	5 U	25 U
Fluoranthene	300		1 U	0.45 J	5 U
Fluorene	300		1 U	1 U	5 U
Hexachlorobenzene	0.02		1 U	1 U	5 U
Hexachlorobutadiene	1		1 U	1 U	5 U
Hexachlorocyclopentadiene	40		20 U	20 U	100 U
Hexachloroethane	7		2 U	2 U	10 U
Hydroquinone	NA		10 U	10 U	50 U
Indeno(1,2,3-Cd)Pyrene	0.2		1 U	1 U	5 U
Isophorone	40		2 U	2 U	10 U
Methanamine, N-Methyl-N-Nitros	8.0		2 U	2 U	10 U
Naphthalene	300		1 U	0.88 N	5450 Y
Nitrobenzene	6		2 U	2 U	4730 Y
n-Nitrosodiethylamine	NA		5 U	5 U	25 U
n-Nitrosodi-n-Butylamine	NA		5 U	5 U	25 U
n-Nitroso-di-n-Propylamine	10		2 U	2 U	10 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality Standards	Sample ID Sample Date Unit	III 4/29/2011 ug/l	KKK 4/29/2011 ug/l	MW-1A 4/30/2011 ug/l
Chemical Name	ug/l		J	J	J
n-Nitrosodiphenylamine	10		5 U	5 U	537 Y
n-Nitrosomethylethylamine	NA		5 U	5 U	25 U
n-Nitrosomorpholine	NA		5 U	5 U	25 U
n-Nitrosopiperidine	NA		5 U	5 U	25 U
n-Nitrosopyrrolidine	NA		5 U	5 U	25 U
o-Chloroaniline	NA		5 U	5 U	82.9
o-Toluidine	NA		5 U	5 U	8380
Pentachlorobenzene	NA		5 U	5 U	25 U
Pentachlorophenol	0.3		10 U	10 U	50 U
Phenanthrene	100		1 U	1 U	5 U
Phenol	2000		2 U	2 U	10 U
Pyrene	200		1 U	1 U	5 U
Pyridine	NA		2 U	2 U	10 U
·					

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

		Sample ID	MW-2	MW-22R	PW-2
	GW Quality	Sample Date	4/28/2011	4/30/2011	4/14/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
1,2,4,5-Tetrachlorobenzene	NA			2 U	
1,2-Diphenylhydrazine	20			1 U	
1,4-Naphthoquinone	NA			5 U	
2,4,5-Trichlorophenol	700		25 U	5 U	5 U
2,4,6-Trichlorophenol	20		9.1 J	5 U	5 U
2,4-Dichlorophenol	20		25 U	5 U	5 U
2,4-Dimethylphenol	100		90.5	5 U	5 U
2,4-Dinitrophenol	40		100 U	20 U	20 U
2,4-Dinitrotoluene	NA		10 U	2 U	2 U
2,6-Dinitrotoluene	10		10 U	2 U	2 U
2-Chloronaphthalene	600		10 U	2 U	2 U
2-Chloronitrobenzene	NA			2 U	
2-Chlorophenol	40		25 U	5 U	5 U
2-Methylnaphthalene	100		352 Y	1 U	10.8
2-Methylphenol	5		33.7 Y	2 U	2 U
2-Nitroaniline	100		25 U	5 U	5 U
2-Nitrophenol	100		25 U	5 U	5 U
3 & 4-Methylphenol	5		58.9 Y	2 U	2 U
3,3'-Dichlorobenzidine	30		25 U	5 U	5 U
3-Nitroaniline	100		25 U	5 U	5 U
4,6-Dinitro-2-Methylphenol	100		100 U	20 U	20 U
4-Aminobiphenyl	NA			5 U	
4-Bromophenyl Phenyl Ether	100		10 U	2 U	2 U
4-chloro-3-Methyl Phenol	100		25 U	5 U	5 U
4-Chloroaniline	30		151 Y	5 U	3.3 J
4-Chlorophenyl Phenyl Ether	100		10 U	2 U	2 U
4-Nitroaniline	100		25 U	5 U	5 U
4-Nitrophenol	100		50 U	10 U	10 U
Acenaphthene	400		57.9	1 U	8.5
Acenaphthylene	100		0.5 U	1 U	0.384
Acetophenone	700			2 U	
Aniline	6		17100 Y	117 Y	304 Y
Anthracene	2000		3.01	1 U	0.306
Atrazine	3			5 U	
Benzaldehyde	NA			5 U	
Benzidine	20			20 U	
Benzo(a)Anthracene	0.1		0.5 U	1 U	0.1 U
Benzo(a)Pyrene	0.1		0.5 U	1 U	0.1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality Standards	Sample ID Sample Date Unit	MW-2 4/28/2011 ug/l	MW-22R 4/30/2011 ug/l	PW-2 4/14/2011 ug/l
Chemical Name	ug/l	Oilit	ug/i	ug/i	ug/i
Benzo(b)Fluoranthene.	0.2		0.5 U	1 U	0.1 U
Benzo(g,h,i)Perylene	100		0.5 U	1 U	0.1 U
Benzo(k)Fluoranthene	0.5		0.5 U	1 U	0.1 U
Benzoic Acide	30000			20 U	
Benzyl Alcohol	2000			2 U	
Biphenyl	400			1 U	
bis(2-Chloroethoxy)Methane	100		10 U	2 U	2 U
bis(2-Chloroethyl)Ether	7		10 U	2 U	2 U
bis(2-Chloroisopropyl)Ether	300		10 U	2 U	2 U
bis(2-Ethylhexyl)Phthalate	3		7.7 J Y	2 U	2 U
Butyl Benzyl Phthalate	100		10 U	2 U	2 U
Caprolactam	NA			2 U	
Carbazole	100		7.1	1 U	0.76 J
Catechol	NA			10 U	
Chlorophenols	NA			5 U	
Chrysene	5		0.5 U	1 U	0.1 U
Dibenzo(a,h)Anthracene	0.3		0.5 U	1 U	0.1 U
Dibenzofuran	100		34.9	5 U	2.5 J
Diethyl Phthalate	6000		10 U	2 U	2 U
Dimethyl Phthalate	100		10 U	2 U	2 U
di-n-Butyl Phthalate	700		10 U	2 U	2 U
di-n-Octyl Phthalate	100		10 U	2 U	2 U
Diphenylamine	200			5 U	
Fluoranthene	300		0.559	1 U	0.1 U
Fluorene	300		22.4	1 U	1.8
Hexachlorobenzene	0.02		0.1 U	1 U	0.02 U
Hexachlorobutadiene	1		5 U	1 U	1 U
Hexachlorocyclopentadiene	40		100 U	20 U	20 U
Hexachloroethane	7		10 U	2 U	2 U
Hydroquinone	NA			10 U	
Indeno(1,2,3-Cd)Pyrene	0.2		0.5 U	1 U	0.1 U
Isophorone	40		10 U	2 U	2 U
Methanamine, N-Methyl-N-Nitros	0.8			2 U	
Naphthalene	300		5410 Y	0.47 J	69.8
Nitrobenzene	6		10 U	2 U	2 U
n-Nitrosodiethylamine	NA			5 U	
n-Nitrosodi-n-Butylamine	NA			5 U	
n-Nitroso-di-n-Propylamine	10		10 U	2 U	2 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality Standards	Sample ID Sample Date Unit	MW-2 4/28/2011 ug/l	MW-22R 4/30/2011 ug/l	PW-2 4/14/2011 ug/l
Chemical Name	ug/l		•	•	-
n-Nitrosodiphenylamine	10		187 Y	5.3	7.4
n-Nitrosomethylethylamine	NA			5 U	
n-Nitrosomorpholine	NA			5 U	
n-Nitrosopiperidine	NA			5 U	
n-Nitrosopyrrolidine	NA			5 U	
o-Chloroaniline	NA			2.2 J	
o-Toluidine	NA			5.6	
Pentachlorobenzene	NA			5 U	
Pentachlorophenol	0.3		4.51 Y	10 U	0.3 U
Phenanthrene	100		5.45	1 U	0.461
Phenol	2000		10 U	2 U	2 U
Pyrene	200		0.693	1 U	0.1 U
Pyridine	NA			2 U	

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

		Sample ID	PW-3	PZ-12-1	PZ-12-2
	GW Quality	Sample Date	4/26/2011	5/18/2011	5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				-
1,2,4,5-Tetrachlorobenzene	NA		2 U	2 U	2 U
1,2-Diphenylhydrazine	20		1 U	1 U	1 U
1,4-Naphthoquinone	NA		5 U	5 U	5 U
2,4,5-Trichlorophenol	700		5 U	5 U	5 U
2,4,6-Trichlorophenol	20		5 U	5 U	5 U
2,4-Dichlorophenol	20		5 U	5 U	5 U
2,4-Dimethylphenol	100		5 U	5 U	5 U
2,4-Dinitrophenol	40		20 U	20 U	20 U
2,4-Dinitrotoluene	NA		2 U	2 U	2 U
2,6-Dinitrotoluene	10		2 U	2 U	2 U
2-Chloronaphthalene	600		0.96 J	2 U	2 U
2-Chloronitrobenzene	NA		2 U	2 U	2 U
2-Chlorophenol	40		5 U	5 U	5 U
2-Methylnaphthalene	100		14.4	1 U	1 U
2-Methylphenol	5		2 U	2 U	2 U
2-Nitroaniline	100		5 U	5 U	5 U
2-Nitrophenol	100		5 U	5 U	5 U
3 & 4-Methylphenol	5		2 U	2 U	2 U
3,3'-Dichlorobenzidine	30		5 U	5 U	5 U
3-Nitroaniline	100		5 U	5 U	5 U
4,6-Dinitro-2-Methylphenol	100		20 U	20 U	20 U
4-Aminobiphenyl	NA		5 U	5 U	5 U
4-Bromophenyl Phenyl Ether	100		2 U	2 U	2 U
4-chloro-3-Methyl Phenol	100		5 U	5 U	5 U
4-Chloroaniline	30		5 U	5 U	5 U
4-Chlorophenyl Phenyl Ether	100		2 U	2 U	2 U
4-Nitroaniline	100		5 U	5 U	5 U
4-Nitrophenol	100		10 U	10 U	10 U
Acenaphthene	400		8	1 U	1 U
Acenaphthylene	100		0.52 J	1 U	1 U
Acetophenone	700		2 U	2 U	2 U
Aniline	6		510 Y	2 U	2 U
Anthracene	2000		1 U	1 U	1 U
Atrazine	3		5 U	5 U	5 U
Benzaldehyde	NA		5 U	5 U	5 U
Benzidine	20		20 U	20 U	20 U
Benzo(a)Anthracene	0.1		0.1 U	0.1 U	0.1 U
Benzo(a)Pyrene	0.1		0.1 U	0.1 U	0.1 U

		Sample ID	PW-3	PZ-12-1	PZ-12-2
	GW Quality	Sample Date	4/26/2011	5/18/2011	5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l		_	_	-
Benzo(b)Fluoranthene.	0.2		0.1 U	0.1 U	0.1 U
Benzo(g,h,i)Perylene	100		1 U	1 U	1 U
Benzo(k)Fluoranthene	0.5		0.1 U	0.1 U	0.1 U
Benzoic Acide	30000		20 U	20 U	20 U
Benzyl Alcohol	2000		2 U	2 U	2 U
Biphenyl	400		1.8	1 U	1 U
bis(2-Chloroethoxy)Methane	100		2 U	2 U	2 U
bis(2-Chloroethyl)Ether	7		2 U	2 U	2 U
bis(2-Chloroisopropyl)Ether	300		2 U	2 U	2 U
bis(2-Ethylhexyl)Phthalate	3		2 U	2 U	2 U
Butyl Benzyl Phthalate	100		2 U	2 U	2 U
Caprolactam	NA		2 U	2 U	2 U
Carbazole	100		0.79 J	1 U	1 U
Catechol	NA		10 U	10 U	10 U
Chlorophenols	NA		5 U	5 U	5 U
Chrysene	5		1 U	1 U	1 U
Dibenzo(a,h)Anthracene	0.3		0.1 U	0.1 U	0.1 U
Dibenzofuran	100		2.3 J	5 U	5 U
Diethyl Phthalate	6000		2 U	2 U	2 U
Dimethyl Phthalate	100		2 U	2 U	2 U
di-n-Butyl Phthalate	700		2 U	2 U	2 U
di-n-Octyl Phthalate	100		2 U	2 U	2 U
Diphenylamine	200		5 U	5 U	5 U
Fluoranthene	300		1 U	1 U	1 U
Fluorene	300		2.1	1 U	1 U
Hexachlorobenzene	0.02		0.02 U	0.02 U	0.02 U
Hexachlorobutadiene	1		1 U	1 U	1 U
Hexachlorocyclopentadiene	40		20 U	20 U	20 U
Hexachloroethane	7		2 U	2 U	2 U
Hydroquinone	NA		10 U	10 U	10 U
Indeno(1,2,3-Cd)Pyrene	0.2		0.1 U	0.1 U	0.1 U
Isophorone	40		2 U	2 U	2 U
Methanamine, N-Methyl-N-Nitros	0.8		2 U	2 U	2 U
Naphthalene	300		92.2	1 U	1.4
Nitrobenzene	6		2 U	2 U	2 U
n-Nitrosodiethylamine	NA		5 U	5 U	5 U
n-Nitrosodi-n-Butylamine	NA		5 U	5 U	5 U
n-Nitroso-di-n-Propylamine	10		2 U	2 U	2 U

	GW Quality Standards	Sample ID Sample Date Unit	PW-3 4/26/2011 ug/l	PZ-12-1 5/18/2011 ug/l	PZ-12-2 5/18/2011 ug/l
Chemical Name	ug/l		· ·	J	J
n-Nitrosodiphenylamine	10		7.2	5 U	5 U
n-Nitrosomethylethylamine	NA		5 U	5 U	5 U
n-Nitrosomorpholine	NA		5 U	5 U	5 U
n-Nitrosopiperidine	NA		5 U	5 U	5 U
n-Nitrosopyrrolidine	NA		5 U	5 U	5 U
o-Chloroaniline	NA		2.8 N	5 U	5 U
o-Toluidine	NA		1.5 N	5 U	5 U
Pentachlorobenzene	NA		5 U	5 U	5 U
Pentachlorophenol	0.3		0.3 U	0.3 U	0.3 U
Phenanthrene	100		0.82 J	1 U	1 U
Phenol	2000		2 U	2 U	2 U
Pyrene	200		0.1 U	1 U	1 U
Pyridine	NA		2 R	2 U	2 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality	Sample ID Sample Date	PZ-12-3 5/18/2011	PZ-12-3 DUP 5/18/2011	PZ-12-4 5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	2	-9.	3 , -	29.1
1,2,4,5-Tetrachlorobenzene	NA		2 U	2 U	2 U
1,2-Diphenylhydrazine	20		1 U	1 U	1 U
1,4-Naphthoquinone	NA		5 U	5 U	5 U
2,4,5-Trichlorophenol	700		5 U	5 U	5 U
2,4,6-Trichlorophenol	20		5 U	5 U	5 U
2,4-Dichlorophenol	20		5 U	5 U	5 U
2,4-Dimethylphenol	100		5 U	5 U	35.4
2,4-Dinitrophenol	40		20 U	20 U	20 U
2,4-Dinitrotoluene	NA		2 U	2 U	2 U
2,6-Dinitrotoluene	10		2 U	2 U	2 U
2-Chloronaphthalene	600		2 U	2 U	15.5
2-Chloronitrobenzene	NA		2 U	2 U	2 U
2-Chlorophenol	40		5 U	5 U	5 U
2-Methylnaphthalene	100		1 U	1 U	93.1
2-Methylphenol	5		2 U	2 U	23.8 Y
2-Nitroaniline	100		5 U	5 U	5 U
2-Nitrophenol	100		5 U	5 U	5 U
3 & 4-Methylphenol	5		2 U	2 U	55.6 Y
3,3'-Dichlorobenzidine	30		5 U	5 U	5 U
3-Nitroaniline	100		5 U	5 U	5 U
4,6-Dinitro-2-Methylphenol	100		20 U	20 U	20 U
4-Aminobiphenyl	NA		5 U	5 U	5 U
4-Bromophenyl Phenyl Ether	100		2 U	2 U	2 U
4-chloro-3-Methyl Phenol	100		5 U	5 U	5 U
4-Chloroaniline	30		5 U	5 U	5 U
4-Chlorophenyl Phenyl Ether	100		2 U	2 U	2 U
4-Nitroaniline	100		5 U	5 U	5 U
4-Nitrophenol	100		10 U	10 U	10 U
Acenaphthene	400		1 U	1 U	1 U
Acenaphthylene	100		1 U	1 U	1 U
Acetophenone	700		2 U	2 U	919 Y
Aniline	6		2 U	2 U	471 Y
Anthracene	2000		1 U	1 U	4.5
Atrazine	3		5 U	5 U	5 U
Benzaldehyde	NA		5 U	5 U	5 U
Benzidine	20		20 U	20 U	20 U
Benzo(a)Anthracene	0.1		0.1 U	0.1 U	0.1 U
Benzo(a)Pyrene	0.1		0.1 U	0.1 U	0.1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

		Sample ID	PZ-12-3	PZ-12-3 DUP	PZ-12-4
	GW Quality	Sample Date	5/18/2011	5/18/2011	5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
Benzo(b)Fluoranthene.	0.2		0.1 U	0.1 U	0.1 U
Benzo(g,h,i)Perylene	100		1 U	1 U	1 U
Benzo(k)Fluoranthene	0.5		0.1 U	0.1 U	0.1 U
Benzoic Acide	30000		20 U	20 U	490
Benzyl Alcohol	2000		2 U	2 U	2 U
Biphenyl	400		1 U	1 U	7.8
bis(2-Chloroethoxy)Methane	100		2 U	2 U	2 U
bis(2-Chloroethyl)Ether	7		2 U	2 U	2 U
bis(2-Chloroisopropyl)Ether	300		2 U	2 U	2 U
bis(2-Ethylhexyl)Phthalate	3		2 U	2 U	2 U
Butyl Benzyl Phthalate	100		2 U	2 U	2 U
Caprolactam	NA		2 U	2 U	2 U
Carbazole	100		1 U	1 U	1 U
Catechol	NA		10 U	10 U	10 U
Chlorophenols	NA		5 U	5 U	5 U
Chrysene	5		1 U	1 U	1 U
Dibenzo(a,h)Anthracene	0.3		0.1 U	0.1 U	0.1 U
Dibenzofuran	100		5 U	5 U	5.3
Diethyl Phthalate	6000		2 U	2 U	2 U
Dimethyl Phthalate	100		2 U	2 U	2 U
di-n-Butyl Phthalate	700		2 U	2 U	2 U
di-n-Octyl Phthalate	100		2 U	2 U	2 U
Diphenylamine	200		5 U	5 U	5 U
Fluoranthene	300		1 U	1 U	1 U
Fluorene	300		1 U	1 U	1 U
Hexachlorobenzene	0.02		0.02 U	0.02 U	0.02 U
Hexachlorobutadiene	1		1 U	1 U	1 U
Hexachlorocyclopentadiene	40		20 U	20 U	20 U
Hexachloroethane	7		2 U	2 U	2 U
Hydroquinone	NA		10 U	10 U	10 U
Indeno(1,2,3-Cd)Pyrene	0.2		0.1 U	0.1 U	0.1 U
Isophorone	40		2 U	2 U	4.1
Methanamine, N-Methyl-N-Nitros	0.8		2 U	2 U	2 U
Naphthalene	300		1 U	1.2	4450 Y
Nitrobenzene	6		2 U	2 U	5130 Y
n-Nitrosodiethylamine	NA		5 U	5 U	5 U
n-Nitrosodi-n-Butylamine	NA		5 U	5 U	5 U
n-Nitroso-di-n-Propylamine	10		2 U	2 U	2 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality	Sample ID Sample Date	PZ-12-3 5/18/2011	PZ-12-3 DUP 5/18/2011	PZ-12-4 5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
n-Nitrosodiphenylamine	10		5 U	5 U	5 U
n-Nitrosomethylethylamine	NA		5 U	5 U	5 U
n-Nitrosomorpholine	NA		5 U	5 U	5 U
n-Nitrosopiperidine	NA		5 U	5 U	5 U
n-Nitrosopyrrolidine	NA		5 U	5 U	5 U
o-Chloroaniline	NA		5 U	5 U	5 U
o-Toluidine	NA		5 U	5 U	5 U
Pentachlorobenzene	NA		5 U	5 U	5 U
Pentachlorophenol	0.3		0.3 U	0.3 U	0.3 U
Phenanthrene	100		1 U	1 U	6.9
Phenol	2000		2 U	2 U	162
Pyrene	200		1 U	1 U	0.89 J
Pyridine	NA		2 U	2 U	317

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

		Sample ID	PZ-12-5	PZ-12-6	TFP-94-1R
	GW Quality	Sample Date	5/18/2011	5/18/2011	4/27/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
1,2,4,5-Tetrachlorobenzene	NA		2 U	2 U	
1,2-Diphenylhydrazine	20		1 U	1 U	
1,4-Naphthoquinone	NA		5 U	5 U	
2,4,5-Trichlorophenol	700		5 U	5 U	5 U
2,4,6-Trichlorophenol	20		5 U	5 U	5 U
2,4-Dichlorophenol	20		5 U	5 U	5 U
2,4-Dimethylphenol	100		5 U	1.9 J	48.7
2,4-Dinitrophenol	40		20 U	20 U	20 U
2,4-Dinitrotoluene	NA		2 U	2 U	2 U
2,6-Dinitrotoluene	10		2 U	2 U	2 U
2-Chloronaphthalene	600		2 U	2 U	2
2-Chloronitrobenzene	NA		2 U	2 U	
2-Chlorophenol	40		5 U	5 U	5 U
2-Methylnaphthalene	100		1 U	1 U	1 U
2-Methylphenol	5		2 U	3.2	2.7
2-Nitroaniline	100		5 U	5 U	5 U
2-Nitrophenol	100		5 U	5 U	5 U
3 & 4-Methylphenol	5		10.6 Y	7.4 Y	2 U
3,3'-Dichlorobenzidine	30		5 U	5 U	5 U
3-Nitroaniline	100		5 U	5 U	5 U
4,6-Dinitro-2-Methylphenol	100		20 U	20 U	20 U
4-Aminobiphenyl	NA		5 U	5 U	
4-Bromophenyl Phenyl Ether	100		2 U	2 U	2 U
4-chloro-3-Methyl Phenol	100		5 U	5 U	5 U
4-Chloroaniline	30		5 U	5 U	25.6
4-Chlorophenyl Phenyl Ether	100		2 U	2 U	2 U
4-Nitroaniline	100		5 U	5 U	5 U
4-Nitrophenol	100		10 U	10 U	10 U
Acenaphthene	400		1 U	1 U	7.6
Acenaphthylene	100		1 U	1 U	1.78
Acetophenone	700		1.8 J	29.5	
Aniline	6		2 U	20 Y	5300 Y
Anthracene	2000		1 U	1 U	0.208
Atrazine	3		5 U	5 U	
Benzaldehyde	NA		5 U	5 U	
Benzidine	20		20 U	20 U	
Benzo(a)Anthracene	0.1		0.1 U	0.1 U	0.1 U
Benzo(a)Pyrene	0.1		0.1 U	0.1 U	0.1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality Standards	Sample ID Sample Date Unit	PZ-12-5 5/18/2011 ug/l	PZ-12-6 5/18/2011 ug/l	TFP-94-1R 4/27/2011 ug/l
Chemical Name	ug/l	Onit	ug/i	ug/i	ug/i
Benzo(b)Fluoranthene.	0.2		0.1 U	0.1 U	0.1 U
Benzo(g,h,i)Perylene	100		1 U	1 U	0.1 U
Benzo(k)Fluoranthene	0.5		0.1 U	0.1 U	0.1 U
Benzoic Acide	30000		131	8.5 J	
Benzyl Alcohol	2000		5.2	3.7	
Biphenyl	400		1 U	1 U	
bis(2-Chloroethoxy)Methane	100		2 U	2 U	2 U
bis(2-Chloroethyl)Ether	7		2 U	2 U	2 U
bis(2-Chloroisopropyl)Ether	300		2 U	2 U	2 U
bis(2-Ethylhexyl)Phthalate	3		1.2 J	2 U	2.1 N
Butyl Benzyl Phthalate	100		2 U	2 U	2 U
Caprolactam	NA		2 U	2 U	
Carbazole	100		1 U	1 U	1.3
Catechol	NA		10 U	10 U	
Chlorophenols	NA		5 U	5 U	
Chrysene	5		1 U	1 U	0.1 U
Dibenzo(a,h)Anthracene	0.3		0.1 U	0.1 U	0.1 U
Dibenzofuran	100		5 U	5 U	3.5 J
Diethyl Phthalate	6000		2 U	2 U	2 U
Dimethyl Phthalate	100		2 U	2 U	2 U
di-n-Butyl Phthalate	700		2 U	2 U	2 U
di-n-Octyl Phthalate	100		2 U	2 U	2 U
Diphenylamine	200		5 U	5 U	
Fluoranthene	300		1 U	1 U	0.1 U
Fluorene	300		1 U	1 U	1.54
Hexachlorobenzene	0.02		0.02 U	0.02 U	0.02 U
Hexachlorobutadiene	1		1 U	1 U	1 U
Hexachlorocyclopentadiene	40		20 U	20 U	20 U
Hexachloroethane	7		2 U	2 U	2 U
Hydroquinone	NA		10 U	10 U	
Indeno(1,2,3-Cd)Pyrene	0.2		0.1 U	0.1 U	0.1 U
Isophorone	40		2 U	0.77 J	2 U
Methanamine, N-Methyl-N-Nitros	0.8		2 U	2 U	
Naphthalene	300		1.2	66.2	644 Y
Nitrobenzene	6		2 U	236 Y	2 U
n-Nitrosodiethylamine	NA		5 U	5 U	
n-Nitrosodi-n-Butylamine	NA		5 U	5 U	
n-Nitroso-di-n-Propylamine	10		2 U	2 U	2 U
NOTEC: II				ala avitavia NI vaaa	

	GW Quality Standards	Sample ID Sample Date Unit	PZ-12-5 5/18/2011 ug/l	PZ-12-6 5/18/2011 ug/l	TFP-94-1R 4/27/2011 ug/l
Chemical Name	ug/l			-	•
n-Nitrosodiphenylamine	10		5 U	5 U	45.8 Y
n-Nitrosomethylethylamine	NA		5 U	5 U	
n-Nitrosomorpholine	NA		5 U	5 U	
n-Nitrosopiperidine	NA		5 U	5 U	
n-Nitrosopyrrolidine	NA		5 U	5 U	
o-Chloroaniline	NA		5 U	5 U	
o-Toluidine	NA		5 U	5 U	
Pentachlorobenzene	NA		5 U	5 U	
Pentachlorophenol	0.3		0.3 U	0.3 U	0.3 U
Phenanthrene	100		1 U	1 U	0.238
Phenol	2000		4.9	10.8	2 U
Pyrene	200		1 U	1 U	0.1 U
Pyridine	NA		2 U	10.1	

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality Standards	Sample ID Sample Date Unit	01-MW-01 5/18/2011 ug/l	01-MW-02 5/18/2011 ug/l	01-MW-03 5/18/2011 ug/l
Chemical Name	ug/l	J	u g,.	ω ₉ ,.	~5··
Aluminum	200	İ	15100 Y	320000 Y	85800 Y
Antimony	6		6 U	6 U	6 U
Arsenic	3		3.8 Y	59.6 Y	29 Y
Barium	6000		200 U	200 U	200 U
Beryllium	1		4.8 Y	17.4 Y	4.2 Y
Cadmium	4		3 U	12.2 Y	4.4 Y
Calcium	NA		51200	327000	33000
Chromium	70		10 U	220 Y	161 Y
Cobalt	NA		50 U	194	50 U
Copper	1300		88.5	142	71
Iron	300		12600 Y	433000 Y	195000 Y
Lead	5		3 U	38.9 Y	6.2 Y
Magnesium	NA		15400	131000	23900
Manganese	50		3450 Y	11800 Y	2230 Y
Mercury	2		0.2 U	4.8 Y	0.45
Nickel	100		197 Y	712 Y	137 Y
Potassium	NA		19600	156000	20800
Selenium	40		10 U	10 U	10 U
Silver	40		10 U	10 U	10 U
Sodium	50000		49800	363000 Y	36300
Thallium	2		2 U	4 U	2 U
Vanadium	NA		50 U	369	167
Zinc	2000		231	878	243
	0 11 11 11				

NOTES: U = not detected, J = estimated value, --- = Not Analyzed,
NA = no applicable criteria, Y = value exceeds Groundwater Quality Standard

		Sample ID	16-MW-2	28R	34R
	GW Quality	Sample Date	4/29/2011	4/28/2011	4/28/2011
	Standards	Unit	4/29/2011 ug/l	4/28/2011 ug/l	4/28/2011 ug/l
Chemical Name	ug/l	J	ug,.	ug, i	ug, .
Aluminum	200		200 U		
Antimony	6		6 U		
Arsenic	3		21.6 Y	31.2 Y	17.1 Y
Barium	6000		200 U		
Beryllium	1		1 U		
Cadmium	4		3 U	3 U	
Calcium	NA		31100		
Chromium	70		10 U		
Cobalt	NA		50 U		
Copper	1300		10 U		
Iron	300		55700 Y		
Lead	5		3 U		
Magnesium	NA		38100		
Manganese	50		11000 Y		
Mercury	2		0.2 U		
Nickel	100		10 U		
Potassium	NA		10000 U		
Selenium	40		20 U		
Silver	40		10 U		
Sodium	50000		26100		
Thallium	2		4 U		
Vanadium	NA		50 U		
Zinc	2000		20 U		
	-0.11				

NOTES: U = not detected, J = estimated value, --- = Not Analyzed,
NA = no applicable criteria, Y = value exceeds Groundwater Quality Standard

	GW Quality	Sample ID Sample Date	38R 4/29/2011	42R 4/30/2011	AAA 4/29/2011
	Standards	Unit	4/29/2011 ug/l	4/30/2011 ug/l	4/29/2011 ug/l
Chemical Name	ug/l	51111	ug/i	ug/i	ug/i
Aluminum	200				366 Y
Antimony	6				6 U
Arsenic	3		3.1 Y	18.2 Y	17.5 Y
Barium	6000				200 U
Beryllium	1				1 U
Cadmium	4		3 U		3 U
Calcium	NA				32200
Chromium	70		10 U		10 U
Cobalt	NA				50 U
Copper	1300				10 U
Iron	300				58000 Y
Lead	5				3
Magnesium	NA				54000
Manganese	50				15100 Y
Mercury	2				0.2 U
Nickel	100				24.9
Potassium	NA				10000 U
Selenium	40				20 U
Silver	40				20 U
Sodium	50000				20000
Thallium	2				4 U
Vanadium	NA				50 U
Vanadium Zinc	2000				20 U
ZINC	2 000				20 U

	0111.0	Sample ID	CCC-R	CCC-R DUP	EEE-R
	GW Quality	Sample Date	4/30/2011	4/30/2011	4/30/2011
Ohamiaal Nama	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l		00011	20011	00011
Aluminum	200		200 U	200 U	200 U
Antimony	6		6 U	6 U	6 U
Arsenic	3		11.2 Y	10.6 Y	16.1 Y
Barium	6000		200 U	200 U	200 U
Beryllium	1		1 U	1 U	1 U
Cadmium	4		3 U	3 U	3 U
Calcium	NA		54500	56100	35600
Chromium	70		10 U	10 U	10 U
Cobalt	NA		50 U	50 U	50 U
Copper	1300		10 U	10 U	10 U
Iron	300		575 Y	595 Y	100 U
Lead	5		3 U	3 U	3 U
Magnesium	NA		57800	57900	58200
Manganese	50		3460 Y	3690 Y	1750 Y
Mercury	2		0.2 U	0.2 U	0.2 U
Nickel	100		10 U	10 U	10 U
Potassium	NA		10000 U	10000 U	10000 U
Selenium	40		10 U	10 U	10 U
Silver	40		10 U	10 U	10 U
Sodium	50000		25300	26600	10000 U
Thallium	2		2 U	2 U	2 U
Vanadium	NA		50 U	50 U	50 U
Zinc	2000		20 U	20 U	20 U

NOTES: U = not detected, J = estimated value, --- = Not Analyzed,
NA = no applicable criteria, Y = value exceeds Groundwater Quality Standard

		Sample ID	FLOD-W1S	FLOD-W2BS	FLOD-W2S
	GW Quality	Sample Date	5/18/2011	5/19/2011	5/19/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
Aluminum	200		170000 Y	294 Y	9060 Y
Antimony	6		6 U	6 U	6 U
Arsenic	3		20 Y	3 U	3.8 Y
Barium	6000		200 U	200 U	200 U
Beryllium	1		16.8 Y	1 U	4.2 Y
Cadmium	4		7.5 Y	3 U	3 U
Calcium	NA		183000	612000	89200
Chromium	70		54	10 U	10 U
Cobalt	NA		175	50 U	50 U
Copper	1300		10 U	10 U	10 U
Iron	300		249000 Y	733 Y	54400 Y
Lead	5		12.3 Y	3 U	3 U
Magnesium	NA		94100	289000	26400
Manganese	50		12300 Y	9760 Y	4440 Y
Mercury	2		0.92	0.2 U	0.2 U
Nickel	100		535	12.2	94.1
Potassium	NA		66600	10000 U	10000 U
Selenium	40		10 U	10 U	10 U
Silver	40		10 U	10 U	10 U
Sodium	50000		190000 Y	404000 Y	57400 Y
Thallium	2		4 U	2 U	2 U
Vanadium	NA		145	50 U	50 U
Zinc	2000		722	21.5	216
110	TEO 11				

NOTES: U = not detected, J = estimated value, --- = Not Analyzed,
NA = no applicable criteria, Y = value exceeds Groundwater Quality Standard

		Sample ID	III	KKK	MW-1A
	GW Quality	Sample Date	4/29/2011	4/29/2011	4/30/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
Aluminum	200		200 U	200 U	200 U
Antimony	6		6 U	6 U	6 U
Arsenic	3		7.3 Y	3 U	5.7 Y
Barium	6000		200 U	200 U	200 U
Beryllium	1		1 U	1 U	1 U
Cadmium	4		3 U	3 U	3 U
Calcium	NA		32500	11800	388000
Chromium	70		10 U	10 U	10
Cobalt	NA		50 U	50 U	50 U
Copper	1300		10 U	10 U	19.8
Iron	300		20100 Y	660 Y	42300 Y
Lead	5		3 U	3 U	5.1 Y
Magnesium	NA		13200	7040	25700
Manganese	50		7490 Y	2540 Y	2610 Y
Mercury	2		0.2 U	0.2 U	0.2 U
Nickel	100		10 U	10 U	18.8
Potassium	NA		10000 U	10000 U	14400
Selenium	40		10 U	10 U	10 U
Silver	40		10 U	10 U	10 U
Sodium	50000		63200 Y	15500	120000 Y
Thallium	2		2 U	2 U	2 U
Vanadium	NA		50 U	50 U	50 U
Zinc	2000		20 U	20 U	44.1

		Sample ID	MW-2	MW-22R	PW-2
	GW Quality	Sample Date	4/28/2011	4/30/2011	4/14/2011
Chemical Name	Standards ug/l	Unit	ug/l	ug/l	ug/l
Aluminum	200			889 Y	
Antimony	6			6 U	
Arsenic	3		14.8 Y	465 Y	3.6 Y
Barium	6000			249	
Beryllium	1			1 U	
Cadmium	4		3 U	3 U	
Calcium	NA			26000	
Chromium	70			10 U	
Cobalt	NA			50 U	
Copper	1300			10 U	
Iron	300			62400 Y	
Lead	5			3 U	
Magnesium	NA			8810	
Manganese	50			2250 Y	
Mercury	2			0.2 U	
Nickel	100			10 U	
Potassium	NA			10000 U	
Selenium	40			10 U	
Silver	40			10 U	
Sodium	50000			23500	
Thallium	2			2 U	
Vanadium	NA			50 U	
Zinc	2000			20 U	

NOTES: U = not detected, J = estimated value, --- = Not Analyzed,
NA = no applicable criteria, Y = value exceeds Groundwater Quality Standard

		Sample ID	PW-3	PZ-12-1	PZ-12-2
	GW Quality	Sample Date	4/26/2011	5/18/2011	5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
Aluminum	200			1870 Y	841 Y
Antimony	6			6 U	6 U
Arsenic	3		4 Y	3 U	3 U
Barium	6000			200 U	200 U
Beryllium	1			1 U	1 U
Cadmium	4			3 U	3 U
Calcium	NA			11900	18800
Chromium	70			10 U	10 U
Cobalt	NA			50 U	50 U
Copper	1300			250	90.8
Iron	300			652 Y	1760 Y
Lead	5			3 U	3 U
Magnesium	NA			5000 U	5000 U
Manganese	50			1460 Y	1390 Y
Mercury	2			0.2 U	0.2 U
Nickel	100			102 Y	35.1
Potassium	NA			10000 U	10000 U
Selenium	40			10 U	10 U
Silver	40			10 U	10 U
Sodium	50000			10400	10000
Thallium	2			2 U	2 U
Vanadium	NA			50 U	50 U
Zinc	2000			194	48.9

NOTES: U = not detected, J = estimated value, --- = Not Analyzed,
NA = no applicable criteria, Y = value exceeds Groundwater Quality Standard

	GW Quality	Sample ID Sample Date	PZ-12-3 5/18/2011	PZ-12-3 DUP 5/18/2011	PZ-12-4 5/18/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Oilit	ug/i	ug/i	ug/i
Aluminum	200		200 U	200 U	52800 Y
Antimony	6		6 U	6 U	12 U
Arsenic	3		3 U	3 U	20.6 Y
Barium	6000		200 U	200 U	200 U
Beryllium	1		1 U	1 U	3.5 Y
Cadmium	4		3 U	3 U	3 U
Calcium	NA		25900	26300	30000
Chromium	70		10 U	10 U	78.4 Y
Cobalt	NA		50 U	50 U	50 U
Copper	1300		22.1	22.2	58.4
Iron	300		676 Y	661 Y	137000 Y
Lead	5		3 U	3 U	22.5 Y
Magnesium	NA		5410	5390	24100
Manganese	50		333 Y	333 Y	1590 Y
Mercury	2		0.2 U	0.2 U	0.85
Nickel	100		10 U	10 U	128 Y
Potassium	NA		10000 U	10000 U	15200
Selenium	40		10 U	10 U	10 U
Silver	40		10 U	10 U	10 U
Sodium	50000		11200	11200	33200
Thallium	2		2 U	2 U	4 U
Vanadium	NA		50 U	50 U	104
Zinc	2000		20 U	20 U	253
	FO 11 1 1 1 1 1				

NOTES: U = not detected, J = estimated value, --- = Not Analyzed,
NA = no applicable criteria, Y = value exceeds Groundwater Quality Standard

		Sample ID	PZ-12-5	PZ-12-6	SS P1
	GW Quality	Sample Date	5/18/2011	5/18/2011	4/26/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l		J	J	· ·
Aluminum	200		1060 Y	1920 Y	
Antimony	6		6 U	6 U	
Arsenic	3		3.6 Y	6.7 Y	5.9 Y
Barium	6000		200 U	200 U	
Beryllium	1		1 U	1 U	
Cadmium	4		3 U	3 U	
Calcium	NA		32400	7600	
Chromium	70		10 U	10 U	
Cobalt	NA		50 U	50 U	
Copper	1300		128	10 U	
Iron	300		10200 Y	33800 Y	
Lead	5		3 U	3 U	
Magnesium	NA		6920	5000 U	
Manganese	50		7060 Y	636 Y	
Mercury	2		0.76	0.2 U	
Nickel	100		86.2	20.4	
Potassium	NA		10000 U	10000 U	
Selenium	40		10 U	10 U	
Silver	40		10 U	10 U	
Sodium	50000		12800	15700	
Thallium	2		2 U	2 U	
Vanadium	NA		50 U	50 U	
Zinc	2000		27.4	46.6	

		Sample ID	SS P1 DUP	SS P2	SS P3
	GW Quality	Sample Date	4/26/2011	4/26/2011	4/26/2011
	Standards	Unit	4/26/2011 ug/l	4/26/2011 ug/l	4/26/2011 ug/l
Chemical Name	ug/l	01.11	ug/i	ug/i	ug/i
Aluminum	200	<u> </u>			
Antimony	6				
Arsenic	3		6.6 Y	7 Y	3 U
Barium	6000				
Beryllium	1				
Cadmium	4				
Calcium	NA				
Chromium	70				
Cobalt	NA				
Copper	1300				
Iron	300				
Lead	5				
Magnesium	NA				
Manganese	50				
Mercury	2				
Nickel	100				
Potassium	NA				
Selenium	40				
Silver	40				
Sodium	50000				
Thallium	2				
Vanadium	NA NA				
Zinc	2000				
NOT	FO 11				

NOTES: U = not detected, J = estimated value, --- = Not Analyzed,
NA = no applicable criteria, Y = value exceeds Groundwater Quality Standard

		Sample ID	TFP-94-1R	TT P1	TT P2
	GW Quality	Sample Date	4/27/2011	4/27/2011	4/27/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
Aluminum	200				
Antimony	6				
Arsenic	3		73.9 Y	3 U	3 U
Barium	6000				
Beryllium	1				
Cadmium	4				
Calcium	NA				
Chromium	70				
Cobalt	NA				
Copper	1300				
Iron	300				
Lead	5				
Magnesium	NA				
Manganese	50				
Mercury	2				
Nickel	100				
Potassium	NA				
Selenium	40				
Silver	40				
Sodium	50000				
Thallium	2				
Vanadium	NA NA				
Zinc	2000				
Zillo	2000				

NOTES: U = not detected, J = estimated value, --- = Not Analyzed,
NA = no applicable criteria, Y = value exceeds Groundwater Quality Standard

		Sample ID	TT P3	YY P1	YY P2
	GW Quality	Sample Date	4/27/2011	4/26/2011	4/26/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	J	ug, i	ug, i	ug,
Aluminum	200				
Antimony	6				
Arsenic	3		3 U	3 U	3.8 Y
Barium	6000				
Beryllium	1				
Cadmium	4				
Calcium	NA				
Chromium	70				
Cobalt	NA				
Copper	1300				
Iron	300				
Lead	5				
Magnesium	NA				
Manganese	50				
Mercury	2				
Nickel	100				
Potassium	NA				
Selenium	40				
Silver	40				
Sodium	50000				
Thallium	2				
Vanadium	NA				
Zinc	2000				
NOT	50 11	1 11 1	N A		

NOTES: U = not detected, J = estimated value, --- = Not Analyzed,
NA = no applicable criteria, Y = value exceeds Groundwater Quality Standard

		Sample ID	YY P3	
	GW Quality	Sample Date	4/26/2011	
	Standards	Unit	ug/l	
Chemical Name	ug/l		- 3 -	
Aluminum	200			
Antimony	6			
Arsenic	3		3 U	
Barium	6000			
Beryllium	1			
Cadmium	4			
Calcium	NA			
Chromium	70			
Cobalt	NA			
Copper	1300			
Iron	300			
Lead	5			
Magnesium	NA			
Manganese	50			
Mercury	2			
Nickel	100			
Potassium	NA			
Selenium	40			
Silver	40			
Sodium	50000			
Thallium	2			
Vanadium	NA			
Zinc	2000			
NO	TES: II – not detected	l active et ad us	lua Nat An	ab = a d

Chemical Name	GW Quality Standards ug/l	Sample ID Sample Date Unit	38R 4/29/2011 ug/l	AAA 4/29/2011 ug/l	CCC-R 4/30/2011 ug/l
Chloride	250000		30200	47900	19900
Cyanide	100			10 U	10 U
Phenols	2000			200 U	200 U
Gross Alpha	15	pci/l			3.7
Gross Beta	50	pci/l			11
Radium 226 / 228 Combined	5	pci/l		-	0.82 U
NOTES	. II. not dotootod	.l – estimated valu	o Not Apolyzo	- d	

Chemical Name	GW Quality Standards ug/l	Sample ID Sample Date Unit	CCC-R DUP 4/30/2011 ug/l	EEE-R 4/30/2011 ug/l	III 4/29/2011 ug/l
Chloride	250000		22700	12400	89100
Cyanide	100		10 U	10 U	
Phenols	2000		200 U	200 U	
Gross Alpha	15	pci/l	3.8	1.88 U	
Gross Beta	50	pci/l	9.2	3.6 LT	
Radium 226 / 228 Combined	5	pci/l	0.112	0.99 U	
NOTES	II = not detected	.l = estimated val	ue, = Not Analyz	zed	

Chemical Name	GW Quality Standards ug/l	Sample ID Sample Date Unit	KKK 4/29/2011 ug/l	MW-1A 4/30/2011 ug/l	MW-2 4/28/2011 ug/l
Chloride	250000		13900	59500	173000
Cyanide	100			17	
Phenols	2000			2700 Y	
Gross Alpha	15	pci/l	1.7 U		
Gross Beta	50	pci/l	3.1 U		
Radium 226 / 228 Combined	5	pci/l	0.87 U	-	
	· II not detected				

	GW Quality	Sample ID Sample Date	MW-22R 4/29/2011	
Chemical Name	Standards ug/l	Unit	ug/l	
Chloride	250000		73400	
Cyanide	100		10 U	
Phenols	2000		200 U	
Gross Alpha	15	pci/l		
Gross Beta	50	pci/l		
Radium 226 / 228 Combined	5	pci/l		
NOTES:	U = not detected, J	= estimated value,	= Not Analy	zed,

Table 4-2
Groundwater Analytical Results
8260 Volatile Organic Compound Data
2011 First Half Impound 8 Wells
Wyeth Holdings Corporation
Former American Cyanamid Site
Bridgewater, New Jersey

	GW Quality	Sample ID Sample Date	RCRA-D1 4/28/2011	RCRA-D2 4/26/2011	RCRA-D3 4/26/2011
Chemical Name	Standards	Unit Sample Method	ug/l PDB	ug/l PDB	ug/l PDB
	ug/l	Sample Method		1 U	
1,1,1-Trichloroethane	30		1 U		1 U
1,1,2,2-Tetrachloroethane	1		1 U	1 U	1 U
1,1,2-Trichloroethane	3		1 U	1 U	1 U
1,1-Dichloroethane	50		1 U	1 U	1 U
1,1-Dichloroethene	1		1 U	1 U	1 U
1,2,4-Trichlorobenzene	9		5 U	5 U	5 U
1,2-Dibromo-3-chloropropane	0.02		10 U	10 U	10 U
1,2-Dibromoethane	0.03		2 U	2 U	2 U
1,2-Dichlorobenzene	600		1 U	1 U	1 U
1,2-Dichloroethane	2		1 U	1 U	1 U
1,2-Dichloroethene (total)	NA		1 U	1 U	1 U
1,2-Dichloropropane	1		1 U	1 U	1 U
1,3,5-Trimethylbenzene	NA		5 U	5 U	5 U
1,3-Dichlorobenzene	600		1 U	1 U	1 U
1,4-Dichlorobenzene	75		1 U	1 U	1 U
1,4-Dioxane	NA		130 U	130 U	130 U
2-Butanone	300		10 U	10 U	10 U
2-Chlorotoluene	NA		5 U	5 U	5 U
2-Hexanone	100		5 U	5 U	5 U
2-Nitropropane	NA		10 U	10 U	10 U
4-Chlorotoluene	NA		5 U	5 U	5 U
4-Methyl-2-pentanone	100		5 U	5 U	5 U
Acetone	6000		10 U	10 U	10 U
Acrolein	4		50 U	50 U	50 U
Acrylonitrile	2		50 U	50 U	50 U
Benzene	1		1 U	1 U	1 U
Bromodichloromethane	1		1 U	1 U	1 U
Bromoform	4		4 U	4 U	4 U
Bromomethane	10		2 U	2 U	2 U
Carbon Disulfide	700		2 U	2 U	2 U
Carbon Tetrachloride	1		1 U	1 U	1 U
Chlorobenzene	50		1 U	1 U	1 U
Chlorobromomethane	NA		5 U	5 U	5 U
Chloroethane	100		1 U	1 U	1 U

		Sample ID	RCRA-D1	RCRA-D2	RCRA-D3
	GW Quality	Sample Date	4/28/2011	4/26/2011	4/26/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
Chloroform	70		1 U	1 U	1 U
Chloromethane	100		1 U	1 U	1 U
cis-1,2-Dichloroethene	70		1 U	1 U	1 U
cis-1,3-Dichloropropylene	1		1 U	1 U	1 U
Cyclohexane	NA		5 U	5 U	5 U
Dibromochloromethane	1		1 U	1 U	1 U
Dichlorodifluoromethane	1000		5 U	5 U	5 U
Diisopropyl ether	20000		5 U	5 U	5 U
Ethyl acetate	6000		5 U	5 U	5 U
Ethyl Acrylate	NA		5 U	5 U	5 U
Ethyl ether	1000		5 U	5 U	5 U
Ethylbenzene	700		1 U	1 U	1 U
Freon 113	NA		5 U	5 U	5 U
Isopropylbenzene	700		2 U	2 U	2 U
Methyl acetate	7000		5 U	5 U	5 U
Methyl tert butyl ether (MTBE)	70		1 U	1 U	1 U
Methylacrylonitrile	NA		10 U	10 U	10 U
Methylcyclohexane	NA		5 U	5 U	5 U
Methylene Chloride	3		2 U	2 U	2 U
o-Xylene	NA		1 U	1 U	1 U
Styrene	100		5 U	5 U	5 U
Tetrachloroethene	1		1 U	1 U	1 U
Toluene	600		1 U	1 U	1 U
trans-1,2-Dichloroethene	100		1 U	1 U	1 U
trans-1,3-Dichloropropene	1		1 U	1 U	1 U
Trichloroethene	1		1 U	1 U	1 U
Trichlorofluoromethane	2000		5 U	5 U	5 U
Vinyl Chloride	1		1 U	1 U	1 U
Xylene (Total)	1000		1 U	1 U	1 U
	IOTES: II - not detected				

GW Quality	Sample ID	RCRA-D4	RCRA-D5	RCRA-D6 4/26/2011
•				
				ug/l PDB
	Sample Method			1 U
				1 U
·				1 U
				_
				1 U
•				1 U
~				5 U
				10 U
				2 U
				1 U
_				1 U
		-		1 U
•				1 U
				5 U
				1 U
				1 U
NA		130 U	130 U	130 U
300		10 U	10 U	10 U
NA		5 U	5 U	5 U
100		5 U	5 U	5 U
NA		10 U	10 U	10 U
NA		5 U	5 U	5 U
100		5 U	5 U	5 U
6000		10 U	10 U	10 U
4		50 U	50 U	50 U
2		50 U	50 U	50 U
1		1 U	1 U	1 U
1		1 U	1 U	1 U
4		4 U	4 U	4 U
10		2 U	2 U	2 U
700		2 U	2 U	2 U
1		1 U	1 U	1 U
50			1 U	1 U
NA		5 U	5 U	5 U
				1 U
100		. 0	, 5	, 5
	NA 100 NA NA 100 6000 4 2 1 1 1 4 10 700 1	GW Quality Standards Sample Date Unit ug/l 30 1 3 50 1 9 0.02 0.03 600 2 NA 1 NA 1 NA 300 NA 100 NA 100 6000 4 2 1 1 4 10 700 1 50 NA	GW Quality Standards Sample Method 4/26/2011 ug/l ug/l pDB 30 1 U 1 1 U 3 1 U 50 1 U 1 1 U 9 5 U 0.02 10 U 0.03 2 U 600 1 U 2 1 U NA 1 U 1 1 U NA 5 U 600 1 U 75 1 U NA 130 U 300 10 U NA 5 U 100 5 U 6000 10 U NA 5 U 100 5 U 6000 10 U 4 50 U 2 50 U 1 1 U 4 50 U 2 50 U 1 1 U 4 4 U 10 2 U 700 2 U	GW Quality Standards ug/l Sample Date Unit ug/l 4/26/2011 ug/l 4/26/2011 ug/l 30 1 U 1 U 1 1 U 1 U 30 1 U 1 U 1 1 U 1 U 50 1 U 1 U 1 1 U 1 U 9 5 U 5 U 0.02 10 U 10 U 0.03 2 U 2 U 600 1 U 1 U NA 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U

	GW Quality	Sample ID Sample Date	RCRA-D4 4/26/2011	RCRA-D5 4/26/2011	RCRA-D6 4/26/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
Chloroform	70		1 U	1 U	1 U
Chloromethane	100		1 U	1 U	1 U
cis-1,2-Dichloroethene	70		1 U	1 U	1 U
cis-1,3-Dichloropropylene	1		1 U	1 U	1 U
Cyclohexane	NA		5 U	5 U	5 U
Dibromochloromethane	1		1 U	1 U	1 U
Dichlorodifluoromethane	1000		5 U	5 U	5 U
Diisopropyl ether	20000		5 U	5 U	5 U
Ethyl acetate	6000		5 U	5 U	5 U
Ethyl Acrylate	NA		5 U	5 U	5 U
Ethyl ether	1000		5 U	5 U	5 U
Ethylbenzene	700		1 U	1 U	1 U
Freon 113	NA		5 U	5 U	5 U
Isopropylbenzene	700		2 U	2 U	2 U
Methyl acetate	7000		5 U	5 U	5 U
Methyl tert butyl ether (MTBE)	70		1 U	1 U	1 U
Methylacrylonitrile	NA		10 U	10 U	10 U
Methylcyclohexane	NA		5 U	5 U	5 U
Methylene Chloride	3		2 U	2 U	2 U
o-Xylene	NA		1 U	1 U	1 U
Styrene	100		5 U	5 U	5 U
Tetrachloroethene	1		1 U	1 U	1 U
Toluene	600		1 U	1 U	1 U
trans-1,2-Dichloroethene	100		1 U	1 U	1 U
trans-1,3-Dichloropropene	1		1 U	1 U	1 U
Trichloroethene	1		1 U	1 U	1 U
Trichlorofluoromethane	2000		5 U	5 U	5 U
Vinyl Chloride	1		1 U	1 U	1 U
Xylene (Total)	1000		1 U	1 U	1 U

	GW Quality	Sample ID Sample Date	RCRA-D7 4/26/2011	RCRA-D8 4/28/2011	RCRA-D9 4/28/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
1,1,1-Trichloroethane	30		1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1		1 U	1 U	1 U
1,1,2-Trichloroethane	3		1 U	1 U	1 U
1,1-Dichloroethane	50		1 U	1 U	1 U
1,1-Dichloroethene	1		1 U	0.84 J	1 U
1,2,4-Trichlorobenzene	9		5 U	5 U	5 U
1,2-Dibromo-3-chloropropane	0.02		10 U	10 U	10 U
1,2-Dibromoethane	0.03		2 U	2 U	2 U
1,2-Dichlorobenzene	600		1 U	1 U	1 U
1,2-Dichloroethane	2		1 U	1 U	1 U
1,2-Dichloroethene (total)	NA		1 U	1 U	1 U
1,2-Dichloropropane	1		1 U	1 U	1 U
1,3,5-Trimethylbenzene	NA		5 U	5 U	5 U
1,3-Dichlorobenzene	600		1 U	1 U	1 U
1,4-Dichlorobenzene	75		1 U	1 U	1 U
1,4-Dioxane	NA		130 U	130 U	130 U
2-Butanone	300		10 U	10 U	10 U
2-Chlorotoluene	NA		5 U	5 U	5 U
2-Hexanone	100		5 U	5 U	5 U
2-Nitropropane	NA		10 U	10 U	10 U
4-Chlorotoluene	NA		5 U	5 U	5 U
4-Methyl-2-pentanone	100		5 U	5 U	5 U
Acetone	6000		10 U	10 U	10 U
Acrolein	4		50 U	50 U	50 U
Acrylonitrile	2		50 U	50 U	50 U
Benzene	1		1 U	1 U	1 U
Bromodichloromethane	1		1 U	1 U	1 U
Bromoform	4		4 U	4 U	4 U
Bromomethane	10		2 U	2 U	2 U
Carbon Disulfide	700		2 U	2 U	2 U
Carbon Tetrachloride	1		1 U	1 U	1 U
Chlorobenzene	50		1 U	1 U	1 U
Chlorobromomethane	NA		5 U	5 U	5 U
Chloroethane	100		1 U	1 U	1 U

	GW Quality	Sample ID Sample Date	RCRA-D7 4/26/2011	RCRA-D8 4/28/2011	RCRA-D9 4/28/2011
Chemical Name	Standards	Unit Sample Method	ug/l PDB	ug/l PDB	ug/l PDB
Chloroform	ug/l 70	Sample Method	1 U	0.26 J	1 U
Chloromethane	100		1 U	1 U	1 U
cis-1,2-Dichloroethene	70		1 U	1 U	1 U
cis-1,3-Dichloropropylene	1		1 U	1 U	1 U
	NA		5 U	5 U	5 U
Cyclohexane Dibromochloromethane	INA 1		1 U	1 U	1 U
Dichlorodifluoromethane	1000		5 U	5 U	5 U
Diisopropyl ether	20000		5 U	5 U	5 U
Ethyl acetate	6000		5 U	5 U	5 U
Ethyl Acrylate	NA		5 U	5 U	5 U
Ethyl ether	1000		5 U	5 U	5 U
Ethylbenzene	700		1 U	1 U	1 U
Freon 113	NA		5 U	5 U	5 U
Isopropylbenzene	700		2 U	2 U	2 U
Methyl acetate	7000		5 U	5 U	5 U
Methyl tert butyl ether (MTBE)	70		1 U	1 U	1 U
Methylacrylonitrile	NA		10 U	10 U	10 U
Methylcyclohexane	NA		5 U	5 U	5 U
Methylene Chloride	3		2 U	2 U	2 U
o-Xylene	NA		1 U	1 U	1 U
Styrene	100		5 U	5 U	5 U
Tetrachloroethene	1		1 U	0.49 J	1 U
Toluene	600		1 U	1 U	1 U
trans-1,2-Dichloroethene	100		1 U	1 U	1 U
trans-1,3-Dichloropropene	1		1 U	1 U	1 U
Trichloroethene	1		1 U	0.32 J	1 U
Trichlorofluoromethane	2000		5 U	5 U	5 U
Vinyl Chloride	1		1 U	1 U	1 U
Xylene (Total)	1000		1 U	1 U	1 U
, (
	ATTO: II was data stand				

	GW Quality	Sample ID Sample Date	RCRA-D10 4/28/2011	RCRA-D11 4/27/2011	RCRA-D12 4/27/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
1,1,1-Trichloroethane	30		1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1		1 U	1 U	1 U
1,1,2-Trichloroethane	3		1 U	1 U	1 U
1,1-Dichloroethane	50		1 U	1 U	1 U
1,1-Dichloroethene	1		1 U	1 U	1 U
1,2,4-Trichlorobenzene	9		5 U	5 U	5 U
1,2-Dibromo-3-chloropropane	0.02		10 U	10 U	10 U
1,2-Dibromoethane	0.03		2 U	2 U	2 U
1,2-Dichlorobenzene	600		1 U	1 U	1 U
1,2-Dichloroethane	2		1 U	1 U	1 U
1,2-Dichloroethene (total)	NA		1 U	1 U	1 U
1,2-Dichloropropane	1		1 U	1 U	1 U
1,3,5-Trimethylbenzene	NA		5 U	5 U	5 U
1,3-Dichlorobenzene	600		1 U	1 U	1 U
1,4-Dichlorobenzene	75		1 U	1 U	1 U
1,4-Dioxane	NA		130 U	130 U	130 U
2-Butanone	300		10 U	10 U	10 U
2-Chlorotoluene	NA		5 U	5 U	5 U
2-Hexanone	100		5 U	5 U	5 U
2-Nitropropane	NA		10 U	10 U	10 U
4-Chlorotoluene	NA		5 U	5 U	5 U
4-Methyl-2-pentanone	100		5 U	5 U	5 U
Acetone	6000		10 U	10 U	10 U
Acrolein	4		50 U	50 U	50 U
Acrylonitrile	2		50 U	50 U	50 U
Benzene	1		1 U	1 U	1 U
Bromodichloromethane	1		1 U	1 U	1 U
Bromoform	4		4 U	4 U	4 U
Bromomethane	10		2 U	2 U	2 U
Carbon Disulfide	700		2 U	2 U	2 U
Carbon Tetrachloride	1		1 U	1 U	1 U
Chlorobenzene	50		1 U	1 U	1 U
Chlorobromomethane	NA		5 U	5 U	5 U
Chloroethane	100		1 U	1 U	1 U

	GW Quality	Sample ID Sample Date	RCRA-D10 4/28/2011	RCRA-D11 4/27/2011	RCRA-D12 4/27/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
Chloroform	70		1 U	1 U	1 U
Chloromethane	100		1 U	1 U	1 U
cis-1,2-Dichloroethene	70		1 U	1 U	1 U
cis-1,3-Dichloropropylene	1		1 U	1 U	1 U
Cyclohexane	NA		5 U	5 U	5 U
Dibromochloromethane	1		1 U	1 U	1 U
Dichlorodifluoromethane	1000		5 U	5 U	5 U
Diisopropyl ether	20000		5 U	5 U	5 U
Ethyl acetate	6000		5 U	5 U	5 U
Ethyl Acrylate	NA		5 U	5 U	5 U
Ethyl ether	1000		5 U	5 U	1.1 J
Ethylbenzene	700		1 U	1 U	1 U
Freon 113	NA		5 U	5 U	5 U
Isopropylbenzene	700		2 U	2 U	2 U
Methyl acetate	7000		5 U	5 U	5 U
Methyl tert butyl ether (MTBE)	70		1 U	1 U	1 U
Methylacrylonitrile	NA		10 U	10 U	10 U
Methylcyclohexane	NA		5 U	5 U	5 U
Methylene Chloride	3		2 U	2 U	2 U
o-Xylene	NA		1 U	1 U	1 U
Styrene	100		5 U	5 U	5 U
Tetrachloroethene	1		0.29 J	1 U	1 U
Toluene	600		1 U	1 U	1 U
trans-1,2-Dichloroethene	100		1 U	1 U	1 U
trans-1,3-Dichloropropene	1		1 U	1 U	1 U
Trichloroethene	1		1 U	1 U	1 U
Trichlorofluoromethane	2000		5 U	5 U	5 U
Vinyl Chloride	1		1 U	1 U	1 U
Xylene (Total)	1000		1 U	1 U	1 U
			_		
NOTEC					

	GW Quality	Sample ID Sample Date	RCRA-D13 4/27/2011	RCRA-D14 4/27/2011	RCRA-D15 4/27/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
1,1,1-Trichloroethane	30		1 U	1 U	1.1
1,1,2,2-Tetrachloroethane	1		1 U	1 U	1 U
1,1,2-Trichloroethane	3		1 U	1 U	1 U
1,1-Dichloroethane	50		1 U	1 U	1.2
1,1-Dichloroethene	1		1 U	1 U	4.7 Y
1,2,4-Trichlorobenzene	9		5 U	5 U	1.8 J
1,2-Dibromo-3-chloropropane	0.02		10 U	10 U	10 U
1,2-Dibromoethane	0.03		2 U	2 U	2 U
1,2-Dichlorobenzene	600		1 U	1 U	1 U
1,2-Dichloroethane	2		1 U	1 U	1 U
1,2-Dichloroethene (total)	NA		1 U	1 U	4.8
1,2-Dichloropropane	1		1 U	1 U	0.56 J
1,3,5-Trimethylbenzene	NA		5 U	5 U	5 U
1,3-Dichlorobenzene	600		1 U	1 U	1 U
1,4-Dichlorobenzene	75		1 U	1 U	1 U
1,4-Dioxane	NA		130 U	130 U	130 U
2-Butanone	300		10 U	10 U	10 U
2-Chlorotoluene	NA		5 U	5 U	5 U
2-Hexanone	100		5 U	5 U	5 U
2-Nitropropane	NA		10 U	10 U	10 U
4-Chlorotoluene	NA		5 U	5 U	5 U
4-Methyl-2-pentanone	100		5 U	5 U	5 U
Acetone	6000		10 U	10 U	10 U
Acrolein	4		50 U	50 U	50 U
Acrylonitrile	2		50 U	50 U	50 U
Benzene	1		1 U	1 U	1 U
Bromodichloromethane	1		1 U	1 U	1 U
Bromoform	4		4 U	4 U	4 U
Bromomethane	10		2 U	2 U	2 U
Carbon Disulfide	700		2 U	2 U	2 U
Carbon Tetrachloride	1		1 U	1 U	24.2 Y
Chlorobenzene	50		1 U	1 U	1 U
Chlorobromomethane	NA		5 U	5 U	5 U
Chloroethane	100		1 U	1 U	1 U

	GW Quality Standards	Sample ID Sample Date Unit	RCRA-D13 4/27/2011 ug/l	RCRA-D14 4/27/2011 ug/l	RCRA-D15 4/27/2011 ug/l
Chemical Name	ug/l	Sample Method	PDB	PDB	PDB
Chloroform	70	•	1 U	1 U	4
Chloromethane	100		1 U	1 U	1 U
cis-1,2-Dichloroethene	70		1 U	1 U	4.8
cis-1,3-Dichloropropylene	1		1 U	1 U	1 U
Cyclohexane	NA		5 U	5 U	5 U
Dibromochloromethane	1		1 U	1 U	1 U
Dichlorodifluoromethane	1000		5 U	5 U	5 U
Diisopropyl ether	20000		5 U	5 U	5 U
Ethyl acetate	6000		5 U	5 U	5 U
Ethyl Acrylate	NA		5 U	5 U	5 U
Ethyl ether	1000		5 U	5 U	5 U
Ethylbenzene	700		1 U	1 U	1 U
Freon 113	NA		5 U	5 U	5 U
Isopropylbenzene	700		2 U	2 U	2 U
Methyl acetate	7000		5 U	5 U	5 U
Methyl tert butyl ether (MTBE)	70		1 U	1 U	1 U
Methylacrylonitrile	NA		10 U	10 U	10 U
Methylcyclohexane	NA		5 U	5 U	5 U
Methylene Chloride	3		2 U	2 U	2 U
o-Xylene	NA		1 U	1 U	1 U
Styrene	100		5 U	5 U	5 U
Tetrachloroethene	1		1 U	1 U	37.2 Y
Toluene	600		1 U	1 U	1 U
trans-1,2-Dichloroethene	100		1 U	1 U	1 U
trans-1,3-Dichloropropene	1		1 U	1 U	1 U
Trichloroethene	1		1 U	1 U	9.9 Y
Trichlorofluoromethane	2000		5 U	5 U	5 U
Vinyl Chloride	1		1 U	1 U	1 U
Xylene (Total)	1000		1 U	1 U	1 U

	GW Quality	Sample ID Sample Date	RCRA-D15 DUP 4/27/2011	
	Standards	Unit	4/27/2011 ug/l	
Chemical Name	ug/l	Sample Method	ug/i PDB	
1,1,1-Trichloroethane	30	Janipie Metrica	1.2	
	1		1.2 1 U	
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	3		1 U	
1,1-Dichloroethane	50		1.2	
1,1-Dichloroethene	1		4.6 Y	
1,2,4-Trichlorobenzene	9		1.7 J	
1,2-Dibromo-3-chloropropane	0.02		10 U	
1,2-Dibromoethane	0.03		2 U	
1,2-Dichlorobenzene	600		1 U	
1,2-Dichloroethane	2		1 U	
1,2-Dichloroethene (total)	NA		4.9	
1,2-Dichloropropane	1		0.52 J	
1,3,5-Trimethylbenzene	NA		5 U	
1,3-Dichlorobenzene	600		1 U	
1,4-Dichlorobenzene	75		1 U	
1,4-Dioxane	NA		130 U	
2-Butanone	300		10 U	
2-Chlorotoluene	NA		5 U	
2-Hexanone	100		5 U	
2-Nitropropane	NA		10 U	
4-Chlorotoluene	NA		5 U	
4-Methyl-2-pentanone	100		5 U	
Acetone	6000		10 U	
Acrolein	4		50 U	
Acrylonitrile	2		50 U	
Benzene	1		1 U	
Bromodichloromethane	1		1 U	
Bromoform	4		4 U	
Bromomethane	10		2 U	
Carbon Disulfide	700		2 U	
Carbon Tetrachloride	1		24.5 Y	
Chlorobenzene	50		1 U	
Chlorobromomethane	NA		5 U	
Chloroethane	100		1 U	
Chloroethane	100		l U	

r		Sample ID	RCRA-D15 DUP	
	GW Quality	Sample Date	4/27/2011	
	Standards	Unit	ug/l	
Chemical Name	ug/l	Sample Method	PDB	
Chloroform	70	oampie wethou	4	
Chloromethane	100		1 U	
cis-1,2-Dichloroethene	70		4.9	
	1		4.9 1 U	
cis-1,3-Dichloropropylene	NA		5 U	
Cyclohexane Dibromochloromethane	NA 1		1 U	
	•			
Dichlorodifluoromethane	1000		5 U	
Diisopropyl ether	20000		5 U	
Ethyl acetate	6000		5 U	
Ethyl Acrylate	NA		5 U	
Ethyl ether	1000		5 U	
Ethylbenzene	700		1 U	
Freon 113	NA		5 U	
Isopropylbenzene	700		2 U	
Methyl acetate	7000		5 U	
Methyl tert butyl ether (MTBE)	70		1 U	
Methylacrylonitrile	NA		10 U	
Methylcyclohexane	NA		5 U	
Methylene Chloride	3		2 U	
o-Xylene	NA		1 U	
Styrene	100		5 U	
Tetrachloroethene	1		36.3 Y	
Toluene	600		1 U	
trans-1,2-Dichloroethene	100		1 U	
trans-1,3-Dichloropropene	1		1 U	
Trichloroethene	1		9.8 Y	
Trichlorofluoromethane	2000		5 U	
Vinyl Chloride	1		1 U	
Xylene (Total)	1000		1 U	
NOTEC	. II not detected	L satimated value	NA - no applicable crit	- 11-

		Sample ID	RCRA-D1	RCRA-D2	RCRA-D3
	GW Quality	Sample Date	4/28/2011	4/26/2011	4/26/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
1,2,4,5-Tetrachlorobenzene	NA		2.1 U	2 U	2 U
1,2-Diphenylhydrazine	20		1 U	1 U	1 U
1,4-Naphthoquinone	NA		5.2 U	5 U	5 U
2,4,5-Trichlorophenol	700		5.2 U	5 U	5 U
2,4,6-Trichlorophenol	20		5.2 U	5 U	5 U
2,4-Dichlorophenol	20		5.2 U	5 U	5 U
2,4-Dimethylphenol	100		5.2 U	5 U	5 U
2,4-Dinitrophenol	40		21 U	20 U	20 U
2,4-Dinitrotoluene	NA		2.1 U	2 U	2 U
2,6-Dinitrotoluene	10		2.1 U	2 U	2 U
2-Chloronaphthalene	600		2.1 U	2 U	2 U
2-Chloronitrobenzene	NA		2.1 U	2 U	2 U
2-Chlorophenol	40		5.2 U	5 U	5 U
2-Methylnaphthalene	100		1 U	1 U	1 U
2-Methylphenol	5		2.1 U	2 U	2 U
2-Nitroaniline	100		5.2 U	5 U	5 U
2-Nitrophenol	100		5.2 U	5 U	5 U
3 & 4-Methylphenol	5		2.1 U	2 U	2 U
3,3'-Dichlorobenzidine	30		5.2 U	5 U	5 U
3-Nitroaniline	100		5.2 U	5 U	5 U
4,6-Dinitro-2-Methylphenol	100		21 U	20 U	20 U
4-Aminobiphenyl	NA		5.2 U	5 U	5 U
4-Bromophenyl Phenyl Ether	100		2.1 U	2 U	2 U
4-chloro-3-Methyl Phenol	100		5.2 U	5 U	5 U
4-Chloroaniline	30		5.2 U	5 U	5 U
4-Chlorophenyl Phenyl Ether	100		2.1 U	2 U	2 U
4-Nitroaniline	100		5.2 U	5 U	5 U
4-Nitrophenol	100		10 U	10 U	10 U
Acenaphthene	400		1 U	1 U	1 U
Acenaphthylene	100		1 U	1 U	1 U
Acetophenone	700		2.1 U	2	2 U
Aniline	6		2.1 U	2 U	2 U
Anthracene	2000		1 U	1 U	1 U
Atrazine	3		5.2 U	5 U	5 U
Benzaldehyde	NA		5.2 U	5 U	5 U
Benzidine	20		21 U	20 U	20 U
Benzo(a)Anthracene	0.1		0.1 U	0.1 U	0.1 U
Benzo(a)Pyrene	0.1		0.1 U	0.1 U	0.1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality	Sample ID Sample Date	RCRA-D1 4/28/2011	RCRA-D2 4/26/2011	RCRA-D3 4/26/2011
Chemical Name	Standards ug/l	Unit	ug/l	ug/l	ug/l
Benzo(b)Fluoranthene.	0.2		0.1 U	0.1 U	0.1 U
Benzo(g,h,i)Perylene	100		1 U	1 U	1 U
Benzo(k)Fluoranthene	0.5		0.1 U	0.1 U	0.1 U
Benzoic Acide	30000		21 U	20 U	20 U
Benzyl Alcohol	2000		2.1 U	2 U	2 U
Biphenyl	400		1 U	1 U	1 U
bis(2-Chloroethoxy)Methane	100		2.1 U	2 U	2 U
bis(2-Chloroethyl)Ether	7		2.1 U	2 U	2 U
bis(2-Chloroisopropyl)Ether	300		2.1 U	2 U	2 U
bis(2-Ethylhexyl)Phthalate	3		2.1 U	2 U	2 U
Butyl Benzyl Phthalate	100		2.1 U	2 U	2 U
Caprolactam	NA		2.1 U	2 U	2 U
Carbazole	100		1 U	1 U	1 U
Catechol	NA		10 U	10 U	10 U
Chlorophenols	NA		5.2 U	5 U	5 U
Chrysene	5		1 U	1 U	1 U
Dibenzo(a,h)Anthracene	0.3		0.1 U	0.1 U	0.1 U
Dibenzofuran	100		5.2 U	5 U	5 U
Diethyl Phthalate	6000		2.1 U	2 U	2 U
Dimethyl Phthalate	100		2.1 U	2 U	2 U
di-n-Butyl Phthalate	700		2.1 U	2 U	2 U
di-n-Octyl Phthalate	100		2.1 U	2 U	2 U
Diphenylamine	200		5.2 U	5 U	5 U
Fluoranthene	300		1 U	1 U	1 U
Fluorene	300		1 U	1 U	1 U
Hexachlorobenzene	0.02		0.021 U	0.02 U	0.02 U
Hexachlorobutadiene	1		1 U	1 U	1 U
Hexachlorocyclopentadiene	40		21 U	20 U	20 U
Hexachloroethane	7		2.1 U	2 U	2 U
Hydroquinone	NA		10 U	10 U	10 U
Indeno(1,2,3-Cd)Pyrene	0.2		0.1 U	0.1 U	0.1 U
Isophorone	40		2.1 U	2 U	2 U
Methanamine, N-Methyl-N-Nitrosos	8.0		2.1 U	2 U	2 U
Naphthalene	300		1 U	1.2	1 U
Nitrobenzene	6		2.1 U	2 U	2 U
n-Nitrosodiethylamine	NA		5.2 U	5 U	5 U
n-Nitrosodi-n-Butylamine	NA		5.2 U	5 U	5 U
n-Nitroso-di-n-Propylamine	10		2.1 U	2 U	2 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

		Sample ID	RCRA-D1	RCRA-D2	RCRA-D3
	GW Quality	Sample Date	4/28/2011	4/26/2011	4/26/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l		J	J	J
n-Nitrosodiphenylamine	10		5.2 U	5 U	5 U
n-Nitrosomethylethylamine	NA		5.2 U	5 U	5 U
n-Nitrosomorpholine	NA		5.2 U	5 U	5 U
n-Nitrosopiperidine	NA		5.2 U	5 U	5 U
n-Nitrosopyrrolidine	NA		5.2 U	5 U	5 U
o-Chloroaniline	NA		5.2 U	5 U	5 U
o-Toluidine	NA		5.2 U	5 U	5 U
Pentachlorobenzene	NA		5.2 U	5 U	5 U
Pentachlorophenol	0.3		0.31 U	0.3 U	0.3 U
Phenanthrene	100		1 U	1 U	1 U
Phenol	2000		2.1 U	2 U	2 U
Pyrene	200		1 U	1 U	1 U
Pyridine	NA		2.1 U	2 U	2 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

		Sample ID	RCRA-D4	RCRA-D5	RCRA-D6
	GW Quality	Sample Date	4/26/2011	4/26/2011	4/26/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
1,2,4,5-Tetrachlorobenzene	NA		2 U	2 U	2 U
1,2-Diphenylhydrazine	20		1 U	1 U	1 U
1,4-Naphthoquinone	NA		5 U	5 U	5 U
2,4,5-Trichlorophenol	700		5 U	5 U	5 U
2,4,6-Trichlorophenol	20		5 U	5 U	5 U
2,4-Dichlorophenol	20		5 U	5 U	5 U
2,4-Dimethylphenol	100		5 U	5 U	5 U
2,4-Dinitrophenol	40		20 U	20 U	20 U
2,4-Dinitrotoluene	NA		2 U	2 U	2 U
2,6-Dinitrotoluene	10		2 U	2 U	2 U
2-Chloronaphthalene	600		2 U	2 U	2 U
2-Chloronitrobenzene	NA		2 U	2 U	2 U
2-Chlorophenol	40		5 U	5 U	5 U
2-Methylnaphthalene	100		1 U	1 U	1 U
2-Methylphenol	5		2 U	2 U	2 U
2-Nitroaniline	100		5 U	5 U	5 U
2-Nitrophenol	100		5 U	5 U	5 U
3 & 4-Methylphenol	5		2 U	2 U	2 U
3,3'-Dichlorobenzidine	30		5 U	5 U	5 U
3-Nitroaniline	100	-	5 U	5 U	5 U
4,6-Dinitro-2-Methylphenol	100		20 U	20 U	20 U
4-Aminobiphenyl	NA		5 U	5 U	5 U
4-Bromophenyl Phenyl Ether	100		2 U	2 U	2 U
4-chloro-3-Methyl Phenol	100		5 U	5 U	5 U
4-Chloroaniline	30		5 U	5 U	5 U
4-Chlorophenyl Phenyl Ether	100		2 U	2 U	2 U
4-Nitroaniline	100		5 U	5 U	5 U
4-Nitrophenol	100		10 U	10 U	10 U
Acenaphthene	400		1 U	1 U	1 U
Acenaphthylene	100		1 U	1 U	1 U
Acetophenone	700		2 U	2 U	2 U
Aniline	6		2 U	2 U	4.6
Anthracene	2000		1 U	1 U	1 U
Atrazine	3		5 U	5 U	5 U
Benzaldehyde	NA		5 U	5 U	5 U
Benzidine	20		20 U	20 U	20 U
Benzo(a)Anthracene	0.1		0.1 U	0.1 U	0.1 U
Benzo(a)Pyrene	0.1		0.1 U	0.1 U	0.1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

		Sample ID	RCRA-D4	RCRA-D5	RCRA-D6
	GW Quality	Sample Date	4/26/2011	4/26/2011	4/26/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
Benzo(b)Fluoranthene.	0.2		0.1 U	0.1 U	0.1 U
Benzo(g,h,i)Perylene	100		1 U	1 U	1 U
Benzo(k)Fluoranthene	0.5		0.1 U	0.1 U	0.1 U
Benzoic Acide	30000		20 U	20 U	20 U
Benzyl Alcohol	2000		2 U	2 U	2 U
Biphenyl	400		1 U	1 U	1 U
bis(2-Chloroethoxy)Methane	100		2 U	2 U	2 U
bis(2-Chloroethyl)Ether	7		2 U	2 U	2 U
bis(2-Chloroisopropyl)Ether	300		2 U	2 U	2 U
bis(2-Ethylhexyl)Phthalate	3		2 U	2 U	2 U
Butyl Benzyl Phthalate	100		2 U	2 U	2 U
Caprolactam	NA		2 U	2 U	2 U
Carbazole	100		1 U	1 U	1 U
Catechol	NA		10 U	10 U	10 U
Chlorophenols	NA		5 U	5 U	5 U
Chrysene	5		1 U	1 U	1 U
Dibenzo(a,h)Anthracene	0.3		0.1 U	0.1 U	0.1 U
Dibenzofuran	100		5 U	5 U	5 U
Diethyl Phthalate	6000		2 U	2 U	2 U
Dimethyl Phthalate	100		2 U	2 U	2 U
di-n-Butyl Phthalate	700		2 U	2 U	2 U
di-n-Octyl Phthalate	100		2 U	2 U	2 U
Diphenylamine	200		5 U	5 U	5 U
Fluoranthene	300		1 U	1 U	1 U
Fluorene	300		1 U	1 U	1 U
Hexachlorobenzene	0.02		0.02 U	0.02 U	0.02 U
Hexachlorobutadiene	1		1 U	1 U	1 U
Hexachlorocyclopentadiene	40		20 U	20 U	20 U
Hexachloroethane	7		2 U	2 U	2 U
Hydroquinone	NA		10 U	10 U	10 U
Indeno(1,2,3-Cd)Pyrene	0.2		0.1 U	0.1 U	0.1 U
Isophorone	40		2 U	2 U	2 U
Methanamine, N-Methyl-N-Nitrosc	0.8		2 U	2 U	2 U
Naphthalene	300		1 U	1 U	1 U
Nitrobenzene	6		2 U	2 U	2 U
n-Nitrosodiethylamine	NA		5 U	5 U	5 U
n-Nitrosodi-n-Butylamine	NA		5 U	5 U	5 U
n-Nitroso-di-n-Propylamine	10		2 U	2 U	2 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality	Sample ID Sample Date	RCRA-D4 4/26/2011	RCRA-D5 4/26/2011	RCRA-D6 4/26/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
n-Nitrosodiphenylamine	10		5 U	5 U	5 U
n-Nitrosomethylethylamine	NA		5 U	5 U	5 U
n-Nitrosomorpholine	NA		5 U	5 U	5 U
n-Nitrosopiperidine	NA		5 U	5 U	5 U
n-Nitrosopyrrolidine	NA		5 U	5 U	5 U
o-Chloroaniline	NA		5 U	5 U	5 U
o-Toluidine	NA		5 U	5 U	5 U
Pentachlorobenzene	NA		5 U	5 U	5 U
Pentachlorophenol	0.3		0.3 U	0.3 U	0.3 U
Phenanthrene	100		1 U	1 U	1 U
Phenol	2000		2 U	2 U	2 U
Pyrene	200		1 U	1 U	1 U
Pyridine	NA		2 U	2 U	2 U

	W Quality	Sample ID Sample Date	RCRA-D7 4/26/2011	RCRA-D8 4/28/2011	RCRA-D9 4/28/2011
Chemical Name	Standards ug/l	Unit	ug/l	ug/l	ug/l
1,2,4,5-Tetrachlorobenzene	NA	-	2 U	2 U	2 U
1,2-Diphenylhydrazine	20		1 U	1 U	1 U
1,4-Naphthoquinone	NA		5 U	5 U	5 U
2,4,5-Trichlorophenol	700		5 U	5 U	5 U
2,4,6-Trichlorophenol	20		5 U	5 U	5 U
2,4-Dichlorophenol	20		5 U	5 U	5 U
2,4-Dimethylphenol	100		5 U	5 U	5 U
2,4-Dinitrophenol	40		20 U	20 U	20 U
2,4-Dinitrotoluene	NA		2 U	2 U	2 U
2,6-Dinitrotoluene	10		2 U	2 U	2 U
2-Chloronaphthalene	600		2 U	2 U	2 U
2-Chloronitrobenzene	NA		2 U	2 U	2 U
2-Chlorophenol	40		5 U	5 U	5 U
2-Methylnaphthalene	100		1 U	1 U	1 U
2-Methylphenol	5		2 U	2 U	2 U
2-Nitroaniline	100		5 U	5 U	5 U
2-Nitrophenol	100		5 U	5 U	5 U
3 & 4-Methylphenol	5		2 U	2 U	2 U
3,3'-Dichlorobenzidine	30		5 U	5 U	5 U
3-Nitroaniline	100		5 U	5 U	5 U
4,6-Dinitro-2-Methylphenol	100		20 U	20 U	20 U
4-Aminobiphenyl	NA		5 U	5 U	5 U
4-Bromophenyl Phenyl Ether	100		2 U	2 U	2 U
4-chloro-3-Methyl Phenol	100		5 U	5 U	5 U
4-Chloroaniline	30		5 U	5 U	5 U
4-Chlorophenyl Phenyl Ether	100		2 U	2 U	2 U
4-Nitroaniline	100		5 U	5 U	5 U
4-Nitrophenol	100		10 U	10 U	10 U
Acenaphthene	400		1 U	1 U	1 U
Acenaphthylene	100		1 U	1 U	1 U
Acetophenone	700		2 U	2 U	2 U
Aniline	6		2 U	2 U	11.4 Y
Anthracene	2000		1 U	1 U	1 U
Atrazine	3		5 U	5 U	5 U
Benzaldehyde	NA		5 U	5 U	5 U
Benzidine	20		20 U	20 U	20 U
Benzo(a)Anthracene	0.1		0.1 U	0.1 U	0.1 U
Benzo(a)Pyrene	0.1		0.1 U	0.1 U	0.1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

		Sample ID	RCRA-D7	RCRA-D8	RCRA-D9
	GW Quality	Sample Date	4/26/2011	4/28/2011	4/28/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
Benzo(b)Fluoranthene.	0.2		0.1 U	0.1 U	0.1 U
Benzo(g,h,i)Perylene	100		1 U	1 U	1 U
Benzo(k)Fluoranthene	0.5		0.1 U	0.1 U	0.1 U
Benzoic Acide	30000		20 U	20 U	20 U
Benzyl Alcohol	2000		2 U	2 U	2 U
Biphenyl	400		1 U	1 U	1 U
bis(2-Chloroethoxy)Methane	100		2 U	2 U	2 U
bis(2-Chloroethyl)Ether	7		2 U	2 U	2 U
bis(2-Chloroisopropyl)Ether	300		2 U	2 U	2 U
bis(2-Ethylhexyl)Phthalate	3		2 U	2 U	2 U
Butyl Benzyl Phthalate	100		2 U	2 U	2 U
Caprolactam	NA		2 U	2 U	2 U
Carbazole	100		1 U	1 U	1 U
Catechol	NA		10 U	10 U	10 U
Chlorophenols	NA		5 U	5 U	5 U
Chrysene	5		1 U	1 U	1 U
Dibenzo(a,h)Anthracene	0.3		0.1 U	0.1 U	0.1 U
Dibenzofuran	100		5 U	5 U	5 U
Diethyl Phthalate	6000		2 U	2 U	2 U
Dimethyl Phthalate	100		2 U	2 U	2 U
di-n-Butyl Phthalate	700		2 U	2 U	2 U
di-n-Octyl Phthalate	100		2 U	2 U	2 U
Diphenylamine	200		5 U	5 U	5 U
Fluoranthene	300		1 U	1 U	1 U
Fluorene	300		1 U	1 U	1 U
Hexachlorobenzene	0.02		0.02 U	0.02 U	0.02 U
Hexachlorobutadiene	1		1 U	1 U	1 U
Hexachlorocyclopentadiene	40		20 U	20 U	20 U
Hexachloroethane	7		2 U	2 U	2 U
Hydroquinone	NA		10 U	10 U	10 U
Indeno(1,2,3-Cd)Pyrene	0.2		0.1 U	0.1 U	0.1 U
Isophorone	40		2 U	2 U	2 U
Methanamine, N-Methyl-N-Nitrosc	0.8		2 U	2 U	2 U
Naphthalene	300		1 U	1 U	4
Nitrobenzene	6		2 U	2 U	2 U
n-Nitrosodiethylamine	NA		5 U	5 U	5 U
n-Nitrosodi-n-Butylamine	NA		5 U	5 U	5 U
n-Nitroso-di-n-Propylamine	10		2 U	2 U	2 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality	Sample ID Sample Date	RCRA-D7 4/26/2011	RCRA-D8 4/28/2011	RCRA-D9 4/28/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
n-Nitrosodiphenylamine	10		5 U	5 U	5 U
n-Nitrosomethylethylamine	NA		5 U	5 U	5 U
n-Nitrosomorpholine	NA		5 U	5 U	5 U
n-Nitrosopiperidine	NA		5 U	5 U	5 U
n-Nitrosopyrrolidine	NA		5 U	5 U	5 U
o-Chloroaniline	NA		5 U	5 U	5 U
o-Toluidine	NA		5 U	5 U	0.99 N
Pentachlorobenzene	NA		5 U	5 U	5 U
Pentachlorophenol	0.3		0.3 U	0.3 U	0.3 U
Phenanthrene	100		1 U	1 U	1 U
Phenol	2000		2 U	2 U	2 U
Pyrene	200		1 U	1 U	1 U
Pyridine	NA		2 U	2 U	2 U

		Sample ID	RCRA-D10	RCRA-D11	RCRA-D12
	GW Quality	Sample Date	4/28/2011	4/27/2011	4/27/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
1,2,4,5-Tetrachlorobenzene	NA		2 U	2 U	2 U
1,2-Diphenylhydrazine	20		1 U	1 U	1 U
1,4-Naphthoquinone	NA		5 U	5 U	5 U
2,4,5-Trichlorophenol	700		5 U	5 U	5 U
2,4,6-Trichlorophenol	20		5 U	5 U	5 U
2,4-Dichlorophenol	20		5 U	5 U	5 U
2,4-Dimethylphenol	100		5 U	5 U	5 U
2,4-Dinitrophenol	40		20 U	20 U	20 U
2,4-Dinitrotoluene	NA		2 U	2 U	2 U
2,6-Dinitrotoluene	10		2 U	2 U	2 U
2-Chloronaphthalene	600		2 U	2 U	2 U
2-Chloronitrobenzene	NA		2 U	2 U	2 U
2-Chlorophenol	40		5 U	5 U	5 U
2-Methylnaphthalene	100		1 U	1 U	1 U
2-Methylphenol	5		2 U	2 U	2 U
2-Nitroaniline	100		5 U	5 U	5 U
2-Nitrophenol	100		5 U	5 U	5 U
3 & 4-Methylphenol	5		2 U	2 U	2 U
3,3'-Dichlorobenzidine	30		5 U	5 U	5 U
3-Nitroaniline	100		5 U	5 U	5 U
4,6-Dinitro-2-Methylphenol	100		20 U	20 U	20 U
4-Aminobiphenyl	NA		5 U	5 U	5 U
4-Bromophenyl Phenyl Ether	100		2 U	2 U	2 U
4-chloro-3-Methyl Phenol	100		5 U	5 U	5 U
4-Chloroaniline	30		5 U	5 U	5 U
4-Chlorophenyl Phenyl Ether	100		2 U	2 U	2 U
4-Nitroaniline	100		5 U	5 U	5 U
4-Nitrophenol	100		10 U	10 U	10 U
Acenaphthene	400		1 U	1 U	1 U
Acenaphthylene	100		1 U	1 U	1 U
Acetophenone	700		2 U	2 U	2 U
Aniline	6		2 U	2 U	2 U
Anthracene	2000		1 U	1 U	1 U
Atrazine	3		5 U	5 U	5 U
Benzaldehyde	NA		5 U	5 U	5 U
Benzidine	20		20 U	20 U	20 U
Benzo(a)Anthracene	0.1		0.1 U	0.1 U	0.1 U
Benzo(a)Pyrene	0.1		0.1 U	0.1 U	0.1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

		Sample ID	RCRA-D10	RCRA-D11	RCRA-D12
	GW Quality	Sample Date	4/28/2011	4/27/2011	4/27/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				-
Benzo(b)Fluoranthene.	0.2		0.1 U	0.1 U	0.1 U
Benzo(g,h,i)Perylene	100		1 U	1 U	1 U
Benzo(k)Fluoranthene	0.5		0.1 U	0.1 U	0.1 U
Benzoic Acide	30000		20 U	20 U	20 U
Benzyl Alcohol	2000		2 U	2 U	2 U
Biphenyl	400		1 U	1 U	1 U
bis(2-Chloroethoxy)Methane	100		2 U	2 U	2 U
bis(2-Chloroethyl)Ether	7		2 U	2 U	2 U
bis(2-Chloroisopropyl)Ether	300		2 U	2 U	2 U
bis(2-Ethylhexyl)Phthalate	3		2 U	2 U	2 U
Butyl Benzyl Phthalate	100		2 U	2 U	2 U
Caprolactam	NA		2 U	2 U	2 U
Carbazole	100		1 U	1 U	1 U
Catechol	NA		10 U	10 U	10 U
Chlorophenols	NA		5 U	5 U	5 U
Chrysene	5		1 U	1 U	1 U
Dibenzo(a,h)Anthracene	0.3		0.1 U	0.1 U	0.1 U
Dibenzofuran	100		5 U	5 U	5 U
Diethyl Phthalate	6000		2 U	2 U	2 U
Dimethyl Phthalate	100		2 U	2 U	2 U
di-n-Butyl Phthalate	700		2 U	2 U	2 U
di-n-Octyl Phthalate	100		2 U	2 U	2 U
Diphenylamine	200		5 U	5 U	5 U
Fluoranthene	300		1 U	1 U	1 U
Fluorene	300		1 U	1 U	1 U
Hexachlorobenzene	0.02		0.02 U	0.02 U	0.02 U
Hexachlorobutadiene	1		1 U	1 U	1 U
Hexachlorocyclopentadiene	40		20 U	20 U	20 U
Hexachloroethane	7		2 U	2 U	2 U
Hydroquinone	NA		10 U	10 U	10 U
Indeno(1,2,3-Cd)Pyrene	0.2		0.1 U	0.1 U	0.1 U
Isophorone	40		2 U	2 U	2 U
Methanamine, N-Methyl-N-Nitros	0.8		2 U	2 U	2 U
Naphthalene	300		1 U	1 U	1 U
Nitrobenzene	6		2 U	2 U	2 U
n-Nitrosodiethylamine	NA		5 U	5 U	5 U
n-Nitrosodi-n-Butylamine	NA		5 U	5 U	5 U
n-Nitroso-di-n-Propylamine	10		2 U	2 U	2 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality Standards	Sample ID Sample Date Unit	RCRA-D10 4/28/2011 ug/l	RCRA-D11 4/27/2011 ug/l	RCRA-D12 4/27/2011 ug/l
Chemical Name	ug/l	S.III	~9′.	~y,	~9 [,] .
n-Nitrosodiphenylamine	10		5 U	5 U	5 U
n-Nitrosomethylethylamine	NA		5 U	5 U	5 U
n-Nitrosomorpholine	NA		5 U	5 U	5 U
n-Nitrosopiperidine	NA		5 U	5 U	5 U
n-Nitrosopyrrolidine	NA		5 U	5 U	5 U
o-Chloroaniline	NA		5 U	5 U	5 U
o-Toluidine	NA		5 U	5 U	5 U
Pentachlorobenzene	NA		5 U	5 U	5 U
Pentachlorophenol	0.3		0.3 U	0.3 U	0.3 U
Phenanthrene	100		1 U	1 U	1 U
Phenol	2000		2 U	2 U	2 U
Pyrene	200		1 U	1 U	1 U
Pyridine	NA		2 U	2 U	2 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality	Sample ID Sample Date	RCRA-D13 4/27/2011	RCRA-D14 4/27/2011	RCRA-D15 4/27/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
1,2,4,5-Tetrachlorobenzene	NA		2 U	2 U	2 U
1,2-Diphenylhydrazine	20		1 U	1 U	1 U
1,4-Naphthoquinone	NA		5 U	5 U	5 U
2,4,5-Trichlorophenol	700		5 U	5 U	5 U
2,4,6-Trichlorophenol	20		5 U	5 U	5 U
2,4-Dichlorophenol	20		5 U	5 U	5 U
2,4-Dimethylphenol	100		5 U	5 U	5 U
2,4-Dinitrophenol	40		20 U	20 U	20 U
2,4-Dinitrotoluene	NA		2 U	2 U	2 U
2,6-Dinitrotoluene	10		2 U	2 U	2 U
2-Chloronaphthalene	600		2 U	2 U	2 U
2-Chloronitrobenzene	NA		2 U	2 U	2 U
2-Chlorophenol	40		5 U	5 U	5 U
2-Methylnaphthalene	100		1 U	1 U	1 U
2-Methylphenol	5		2 U	2 U	2 U
2-Nitroaniline	100		5 U	5 U	5 U
2-Nitrophenol	100		5 U	5 U	5 U
3 & 4-Methylphenol	5		2 U	2 U	2 U
3,3'-Dichlorobenzidine	30		5 U	5 U	5 U
3-Nitroaniline	100		5 U	5 U	5 U
4,6-Dinitro-2-Methylphenol	100		20 U	20 U	20 U
4-Aminobiphenyl	NA		5 U	5 U	5 U
4-Bromophenyl Phenyl Ether	100		2 U	2 U	2 U
4-chloro-3-Methyl Phenol	100		5 U	5 U	5 U
4-Chloroaniline	30		5 U	5 U	5 U
4-Chlorophenyl Phenyl Ether	100		2 U	2 U	2 U
4-Nitroaniline	100		5 U	5 U	5 U
4-Nitrophenol	100		10 U	10 U	10 U
Acenaphthene	400		1 U	1 U	1 U
Acenaphthylene	100		1 U	1 U	1 U
Acetophenone	700		2 U	2 U	2 U
Aniline	6		2 U	2 U	2 U
Anthracene	2000		1 U	1 U	1 U
Atrazine	3		5 U	5 U	5 U
Benzaldehyde	NA		5 U	5 U	5 U
Benzidine	20		20 U	20 U	20 U
Benzo(a)Anthracene	0.1		0.1 U	0.1 U	0.1 U
Benzo(a)Pyrene	0.1		0.1 U	0.1 U	0.1 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

		Sample ID	RCRA-D13	RCRA-D14	RCRA-D15
	GW Quality	Sample Date	4/27/2011	4/27/2011	4/27/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				-
Benzo(b)Fluoranthene.	0.2		0.1 U	0.1 U	0.1 U
Benzo(g,h,i)Perylene	100		1 U	1 U	1 U
Benzo(k)Fluoranthene	0.5		0.1 U	0.1 U	0.1 U
Benzoic Acide	30000		20 U	20 U	20 U
Benzyl Alcohol	2000		2 U	2 U	2 U
Biphenyl	400		1 U	1 U	1 U
bis(2-Chloroethoxy)Methane	100		2 U	2 U	2 U
bis(2-Chloroethyl)Ether	7		2 U	2 U	2 U
bis(2-Chloroisopropyl)Ether	300		2 U	2 U	2 U
bis(2-Ethylhexyl)Phthalate	3		2 U	2 U	2 U
Butyl Benzyl Phthalate	100		2 U	2 U	2 U
Caprolactam	NA		2 U	2 U	2 U
Carbazole	100		1 U	1 U	1 U
Catechol	NA		10 U	10 U	10 U
Chlorophenols	NA		5 U	5 U	5 U
Chrysene	5		1 U	1 U	1 U
Dibenzo(a,h)Anthracene	0.3		0.1 U	0.1 U	0.1 U
Dibenzofuran	100		5 U	5 U	5 U
Diethyl Phthalate	6000		2 U	2 U	2 U
Dimethyl Phthalate	100		2 U	2 U	2 U
di-n-Butyl Phthalate	700		2 U	2 U	2 U
di-n-Octyl Phthalate	100		2 U	2 U	2 U
Diphenylamine	200		5 U	5 U	5 U
Fluoranthene	300		1 U	1 U	1 U
Fluorene	300		1 U	1 U	1 U
Hexachlorobenzene	0.02		0.02 U	0.02 U	0.02 U
Hexachlorobutadiene	1		1 U	1 U	1 U
Hexachlorocyclopentadiene	40		20 U	20 U	20 U
Hexachloroethane	7		2 U	2 U	2 U
Hydroquinone	NA		10 U	10 U	10 U
Indeno(1,2,3-Cd)Pyrene	0.2		0.1 U	0.1 U	0.1 U
Isophorone	40		2 U	2 U	2 U
Methanamine, N-Methyl-N-Nitros	0.8		2 U	2 U	2 U
Naphthalene	300		1 U	1 U	1 U
Nitrobenzene	6		2 U	2 U	2 U
n-Nitrosodiethylamine	NA		5 U	5 U	5 U
n-Nitrosodi-n-Butylamine	NA		5 U	5 U	5 U
n-Nitroso-di-n-Propylamine	10		2 U	2 U	2 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

	GW Quality Standards	Sample ID Sample Date Unit	RCRA-D13 4/27/2011 ug/l	RCRA-D14 4/27/2011 ug/l	RCRA-D15 4/27/2011 ug/l
Chemical Name	ug/l		J	J	J
n-Nitrosodiphenylamine	10		5 U	5 U	5 U
n-Nitrosomethylethylamine	NA		5 U	5 U	5 U
n-Nitrosomorpholine	NA		5 U	5 U	5 U
n-Nitrosopiperidine	NA		5 U	5 U	5 U
n-Nitrosopyrrolidine	NA		5 U	5 U	5 U
o-Chloroaniline	NA		5 U	5 U	5 U
o-Toluidine	NA		5 U	5 U	5 U
Pentachlorobenzene	NA		5 U	5 U	5 U
Pentachlorophenol	0.3		0.3 U	0.3 U	0.3 U
Phenanthrene	100		1 U	1 U	1 U
Phenol	2000		2 U	2 U	2 U
Pyrene	200		1 U	1 U	1 U
Pyridine	NA		2 U	2 U	2 U

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

		Sample ID	RCRA-D15 DUP
	GW Quality	Sample Date	4/27/2011
	Standards	Unit	
Chemical Name	ug/l		
1,2,4,5-Tetrachlorobenzene	NA		2 U
1,2-Diphenylhydrazine	20		1 U
1,4-Naphthoquinone	NA		5 U
2,4,5-Trichlorophenol	700		5 U
2,4,6-Trichlorophenol	20		5 U
2,4-Dichlorophenol	20		5 U
2,4-Dimethylphenol	100		5 U
2,4-Dinitrophenol	40		20 U
2,4-Dinitrotoluene	NA		2 U
2,6-Dinitrotoluene	10		2 U
2-Chloronaphthalene	600		2 U
2-Chloronitrobenzene	NA		2 U
2-Chlorophenol	40		5 U
2-Methylnaphthalene	100		1 U
2-Methylphenol	5		2 U
2-Nitroaniline	100		5 U
2-Nitrophenol	100		5 U
3 & 4-Methylphenol	5		2 U
3,3'-Dichlorobenzidine	30		5 U
3-Nitroaniline	100		5 U
4,6-Dinitro-2-Methylphenol	100		20 U
4-Aminobiphenyl	NA		5 U
4-Bromophenyl Phenyl Ether	100		2 U
4-chloro-3-Methyl Phenol	100		5 U
4-Chloroaniline	30		5 U
4-Chlorophenyl Phenyl Ether	100		2 U
4-Nitroaniline	100		5 U
4-Nitrophenol	100		10 U
Acenaphthene	400		1 U
Acenaphthylene	100		1 U
Acetophenone	700		2 U
Aniline	6		11.8 Y
Anthracene	2000		1 U
Atrazine	3		5 U
Benzaldehyde	NA		5 U
Benzidine	20		20 U
Benzo(a)Anthracene	0.1		0.1 U
Benzo(a)Pyrene	0.1		0.1 U
		ootimated value	NA – no applicable criteria. N – negate

		Sample ID	RCRA-D15 DUP	
	GW Quality	Sample Date	4/27/2011	
	Standards	Unit	ug/l	
Chemical Name	ug/l		• •	
Benzo(b)Fluoranthene.	0.2		0.1 U	
Benzo(g,h,i)Perylene	100		1 U	
Benzo(k)Fluoranthene	0.5		0.1 U	
Benzoic Acide	30000		20 U	
Benzyl Alcohol	2000		2 U	
Biphenyl	400		1 U	
bis(2-Chloroethoxy)Methane	100		2 U	
bis(2-Chloroethyl)Ether	7		2 U	
bis(2-Chloroisopropyl)Ether	300		2 U	
bis(2-Ethylhexyl)Phthalate	3		2 U	
Butyl Benzyl Phthalate	100		2 U	
Caprolactam	NA		2 U	
Carbazole	100		1 U	
Catechol	NA		10 U	
Chlorophenols	NA		5 U	
Chrysene	5		1 U	
Dibenzo(a,h)Anthracene	0.3		0.1 U	
Dibenzofuran	100		5 U	
Diethyl Phthalate	6000		2 U	
Dimethyl Phthalate	100		2 U	
di-n-Butyl Phthalate	700		2 U	
di-n-Octyl Phthalate	100		2 U	
Diphenylamine	200		5 U	
Fluoranthene	300		1 U	
Fluorene	300		1 U	
Hexachlorobenzene	0.02		0.02 U	
Hexachlorobutadiene	1		1 U	
Hexachlorocyclopentadiene	40		20 U	
Hexachloroethane	7		2 U	
Hydroquinone	NA		10 U	
Indeno(1,2,3-Cd)Pyrene	0.2		0.1 U	
Isophorone	40		2 U	
Methanamine, N-Methyl-N-Nitros	0.8		2 U	
Naphthalene	300		5.8	
Nitrobenzene	6		2 U	
n-Nitrosodiethylamine	NA		5 U	
n-Nitrosodi-n-Butylamine	NA		5 U	
n-Nitroso-di-n-Propylamine	10		2 U	
NOTEC: II			NA pagandiaghla suitsuis N	

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

		Comple ID	RCRA-D15 DUP	
	GW Quality	Sample Date		
	Standards	Unit		
Chemical Name	ug/l	Oilit	ug/i	
n-Nitrosodiphenylamine	10		5 U	
n-Nitrosomethylethylamine	NA NA		5 U	
n-Nitrosomorpholine	NA NA		5 U	
n-Nitrosopiperidine	NA NA		5 U	
n-Nitrosopyrrolidine	NA NA		5 U	
o-Chloroaniline	NA NA		5 U	
o-Chloroanline o-Toluidine	NA NA		0.93 N	
			5 U	
Pentachlorobenzene	NA			
Pentachlorophenol	0.3		0.3 U	
Phenanthrene	100		1 U	
Phenol	2000		2 U	
Pyrene	200		1 U	
Pyridine	NA		2 U	

NOTES: U = not detected, J = estimated value, NA = no applicable criteria, N = negate, Y = value exceeds Groundwater Quality Standard, --- = Not analyzed, R = rejected

Chemical Name	GW Quality Standards	Sample ID Sample Date Unit	RCRA-D1 4/28/2011 ug/l	RCRA-D2 4/26/2011 ug/l	RCRA-D3 4/26/2011 ug/l
Aluminum	ug/l 200		200 U	200 U	200 U
	6		6 U	6 U	200 U
Antimony Arsenic	3		3 U	3 U	3 U
Barium	6000		200 U	200 U	200 U
Beryllium			1 U	1 U	200 U
Cadmium	1 4		3 U	3 U	3 U
Calcium	NA		105000	114000	123000
Chromium	70		10 U	10 U	123000 10 U
	NA		50 U	50 U	50 U
Cobalt					
Copper	1300		10 U	10 U	10 U
Iron	300		100 U	100 U	100 U
Lead	5		3 U	3 U	3 U
Magnesium 	NA		15200	15900	16700
Manganese	50		15 U	15 U	15 U
Mercury	2		0.2 U	0.2 U	0.2 U
Nickel	100		10 U	10 U	10 U
Potassium	NA		10000 U	10000 U	10000 U
Selenium	40		10 U	10 U	10 U
Silver	40		10 U	10 U	10 U
Sodium	50000		33600	36400	35200
Thallium	2		2 U	2 U	2 U
Vanadium	NA		50 U	50 U	50 U
Zinc	2000		20 U	20 U	20 U

	GW Quality Standards	Sample ID Sample Date Unit	RCRA-D4 4/26/2011 ug/l	RCRA-D5 4/26/2011 ug/l	RCRA-D6 4/26/2011 ug/l
Chemical Name	ug/l				
Aluminum	200		200 U	200 U	261 Y
Antimony	6		6 U	6 U	6 U
Arsenic	3		3 U	3 U	3 U
Barium	6000		200 U	200 U	241
Beryllium	1		1 U	1 U	1 U
Cadmium	4		3 U	3 U	3 U
Calcium	NA		102000	114000	175000
Chromium	70		10 U	69.8	12.8
Cobalt	NA		50 U	50 U	50 U
Copper	1300		10 U	10 U	10 U
Iron	300		100 U	494 Y	442 Y
Lead	5		3 U	3 U	3 U
Magnesium	NA		11800	16300	26300
Manganese	50		15 U	206 Y	169 Y
Mercury	2		0.2 U	0.2 U	0.2 U
Nickel	100		10 U	10 U	10.3
Potassium	NA		10000 U	10000 U	10000 U
Selenium	40		10 U	10 U	10 U
Silver	40		10 U	10 U	10 U
Sodium	50000		31000	53200 Y	90800 Y
Thallium	2		2 U	2 U	2 U
Vanadium	NA		50 U	50 U	50 U
Zinc	2000		20 U	20 U	20 U

	GW Quality	Sample ID Sample Date	RCRA-D7 4/26/2011	RCRA-D8 4/28/2011	RCRA-D9 4/28/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
Aluminum	200		200 U	200 U	200 U
Antimony	6		6 U	6 U	6 U
Arsenic	3		3 U	3 U	3 U
Barium	6000		200 U	426	200 U
Beryllium	1		1 U	1 U	1 U
Cadmium	4		3 U	3 U	3 U
Calcium	NA		96500	85600	102000
Chromium	70		10 U	10 U	10 U
Cobalt	NA		50 U	50 U	50 U
Copper	1300		10 U	10 U	10 U
Iron	300		403 Y	229	436 Y
Lead	5		3 U	3 U	3 U
Magnesium	NA		32300	13900	16000
Manganese	50		70.8 Y	15 U	2120 Y
Mercury	2		0.2 U	0.2 U	0.2 U
Nickel	100		10 U	10 U	10 U
Potassium	NA		10000 U	10000 U	10000 U
Selenium	40		10 U	10 U	10 U
Silver	40		10 U	10 U	10 U
Sodium	50000		119000 Y	22200	23500
Thallium	2		2 U	2 U	2 U
Vanadium	NA		50 U	50 U	50 U
Zinc	2000		20 U	20 U	20 U

	GW Quality	Sample ID Sample Date	RCRA-D10 4/28/2011	RCRA-D11 4/27/2011	RCRA-D12 4/27/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l				
Aluminum	200		200 U	200 U	200 U
Antimony	6		6 U	6 U	6 U
Arsenic	3		3 U	3 U	3 U
Barium	6000		692	700	200 U
Beryllium	1		1 U	1 U	1 U
Cadmium	4		3 U	3 U	3 U
Calcium	NA		75800	72200	136000
Chromium	70		10 U	10 U	10 U
Cobalt	NA		50 U	50 U	50 U
Copper	1300		10 U	10 U	10 U
Iron	300		100 U	100 U	2110 Y
Lead	5		3 U	3 U	3 U
Magnesium	NA		8570	12300	29900
Manganese	50		15 U	15 U	156 Y
Mercury	2		0.2 U	0.2 U	0.2 U
Nickel	100		10 U	10 U	10 U
Potassium	NA		10000 U	10000 U	10000 U
Selenium	40		10 U	10 U	10 U
Silver	40		10 U	10 U	10 U
Sodium	50000		18200	13900	29800
Thallium	2		2 U	2 U	2 U
Vanadium	NA NA		50 U	50 U	50 U
Zinc	2000		20 U	20 U	20 U

	GW Quality	Sample ID Sample Date	RCRA-D13 4/27/2011	RCRA-D14 4/27/2011	RCRA-D15 4/27/2011
	Standards	Unit	ug/l	ug/l	ug/l
Chemical Name	ug/l	0	ug/i	ug/i	ug/i
Aluminum	200		200 U	200 U	200 U
Antimony	6		6 U	6 U	6 U
Arsenic	3		3 U	3 U	3 U
Barium	6000		981	574	453
Beryllium	1		1 U	1 U	1 U
Cadmium	4		3 U	3 U	3 U
Calcium	NA		67200	59700	66000
Chromium	70		10 U	10 U	10 U
Cobalt	NA		50 U	50 U	50 U
Copper	1300		10 U	10 U	10 U
Iron	300		100 U	100 U	100 U
Lead	5		3 U	3 U	3 U
Magnesium	NA		7060	8880	10700
Manganese	50		15 U	15 U	83.5 Y
Mercury	2		0.2 U	0.2 U	0.2 U
Nickel	100		10 U	10 U	10 U
Potassium	NA		10000 U	10000 U	10000 U
Selenium	40		10 U	10 U	10 U
Silver	40		10 U	10 U	10 U
Sodium	50000		15300	15000	14300
Thallium	2		2 U	2 U	2 U
Vanadium	NA		50 U	50 U	50 U
Zinc	2000		20 U	20 U	20 U

		Commis ID	DODA DAS DUD	
	CW Ouglity		RCRA-D15 DUP 4/27/2011	
	GW Quality Standards	Sample Date Unit		
Chemical Name	ug/l	Unit	ug/l	
Aluminum	200		200 U	
Antimony	6		6 U	
Arsenic	3		3 U	
Barium	6000		445	
			1 U	
Beryllium Cadmium	1 4		3 U	
	NA			
Calcium			64100 10 U	
Chromium	70			
Cobalt	NA 1000		50 U	
Copper	1300		10 U	
Iron 	300		100 U	
Lead	5		3 U	
Magnesium	NA		10500	
Manganese	50		15 U	
Mercury	2		0.2 U	
Nickel	100		10 U	
Potassium	NA		10000 U	
Selenium	40		10 U	
Silver	40		10 U	
Sodium	50000		13100	
Thallium	2		2 U	
Vanadium	NA		50 U	
Zinc	2000		20 U	

Chemical Name	GW Quality Standards ug/l	Sample ID Sample Date Unit	RCRA-D1 4/28/2011 ug/l	RCRA-D2 4/26/2011 ug/l	RCRA-D3 4/26/2011 ug/l
Total Organic Carbon	NA		1000 U	1000 U	1000 U
Total Organic Halides (Tox)					
Total Displyed Solids					
Total Organic Halides (Tox) Total Disolved Solids	NA 500000		200 U 481000	50 U 565000 Y	50 U 700000 Y
NOTES	S: II – not detected	L – estimated va	lue. B = blank contar	minated N – negate	

Chemical Name	GW Quality Standards ug/l	Sample ID Sample Date Unit	RCRA-D4 4/26/2011 ug/l	RCRA-D5 4/26/2011 ug/l	RCRA-D6 4/26/2011 ug/l
Total Organic Carbon	NA		1000 U	1100	1400
Total Organic Halides (Tox)					
Total Disolved Solids					
Total Organic Halides (Tox) Total Disolved Solids	NA 500000		50 U 504000 Y	50 U 656000 Y	50 U 1180000 Y
NOTES	S: U = not detected	.l = estimated va	lue. B = blank contar	ninated N = negate	

Chemical Name	GW Quality Standards ug/l	Sample ID Sample Date Unit	RCRA-D7 4/26/2011 ug/l	RCRA-D8 4/28/2011 ug/l	RCRA-D9 4/28/2011 ug/l
Total Organic Carbon	NA		1100	1000	3200
Total Organic Halides (Tox)	NA		50 U	50 U	50 U
Total Disolved Solids	500000		890000 Y	428000	413000
	C: II not detected				

Total Organic Carbon Total Organic Halides (Tox)	ug/l NA NA			
Total Organic Halides (Tox)	NA	1000 U	1000 U	3100
3		50 U	50 U	100 U
Total Disolved Solids	500000			
Total Disolved Solids	500000	50 U 331000	50 U 396000	100 U 631000 Y
		ue. B = blank contan		

Chemical Name	GW Quality Standards ug/l	Sample ID Sample Date Unit	RCRA-D13 4/27/2011 ug/l	RCRA-D14 4/27/2011 ug/l	RCRA-D15 4/27/2011 ug/l
Total Organic Carbon	NA		1000 U	1000 U	1000 U
Total Organic Halides (Tox)					
Total Disolved Solids					
Total Organic Halides (Tox) Total Disolved Solids	NA 500000		50 U 309000	50 U 241000	50 U 253000
NOTE:	S: II – not detected	.l = estimated valu	e. B = blank contam	inated N – negate	

		Sample ID	RCRA-D15 DUP	
	GW Quality	Sample Date	4/27/2011	
	Standards	Unit	ug/l	
Chemical Name	ug/l	Oilit	ug/i	
Total Organic Carbon	NA NA		1000 U	
Total Organic Halides (Tox)	NA		100 U	
Total Disolved Solids	500000		271000	
Total Disolved Solids	300000		27 1000	
NOTES	S: II = not detected .	I – estimated value	. B = blank contaminated. N = negate.	

	F٩

SEMI-ANNUAL GROUNDWATER MONITORING FIRST HALF 2011

FIGURES

Contour Map Reporting Form

Figure 3-3: Site Wide Semi-Annual Monitoring Main Plant Overburden Groundwater Contour Map (April 25 & 30, 2011)

This reporting form shall accompany each groundwater contour map submittal. Use additional sheets as necessary.

1.	Did any surveyed well casing elevations change from the previous sampling event? If yes, attach new "Well Certification-Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc)	Yes □ N	o 🗵	
2.	Are there any monitoring wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? If yes, identify these wells.	Y	es 🗵	No □
	-28-R, O-R, 19-R, AAA, CCC-R, EEE-R, MW-7, III, KKK, 16MW-2, 32-R, 41-R, 42R, and TFP-94-1R2 Consistent with historic trends, does not interferepresentative samples			
3.	Are there any monitoring wells present at the site but omitted from the contour map? Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.	Y	es 🗆	No ⊠
4.	Are there any monitoring wells containing separate phase product during this event? Were any of the monitoring wells with separate phase product included in the groundwater If yes, show the formula used to correct the water table elevation.			No ⊠
5.	Has the groundwater flow direction changed more than 45° from the previous ground water contour map? If yes, discuss the reasons for the change.	Y	es 🗆	No ⊠
6.	Has groundwater mounding and/or depressions been identified in the groundwater contour map? Unless the groundwater mounds and / or depressions are caused by the groundwater remediation system, discuss the reasons for the occurrence. -Mounding beneath Lagoon 7 is likely due to the water level in Lagoon 7 - Mounding beneath the MW-10 area is due to the location between discha Cuckolds Brook and the capture of overburden groundwater by the bedrock -Depression beneath MW-05-WS1 area is likely due to pumping of bedrock PW-3 capturing overburden groundwater.	k pumping sy	epres ystem	
7.	Are all the wells used in the contour map screened in the same water-bearing zone? If no, justify inclusion of those wells.	Yes ⊠ N	o 🗆	
8.	Were the groundwater contours □ computer generated □ computer aided, or ☑ hand-drawn? If computer aided or generated, identify the interpolation method(s) used.			
	Pfizer Inc Sc	urce: NJDEF	03/95	5

Pfizer Inc Bound Brook Facility

Contour Map Reporting Form

Figure 3-4: Site Wide Semi-Annual Monitoring Bedrock Groundwater Contour Map (April 25, 2011)

This reporting form shall accompany each groundwater contour map submittal. Use additional sheets as necessary.

		,	
Did any surveyed well casing elevations change from the previous sampling event? If yes, attach new "Well Certification-Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).	Yes □	No ⊠	
Are there any monitoring wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? If yes, identify these wells.		Yes □	No ⊠
Are there any monitoring wells present at the site but omitted from the contour map? Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.		Yes □	No ⊠
Are there any monitoring wells containing separate phase product during this event? Were any of the monitoring wells with separate phase product included in the groundwater of the separate phase product included in the groundwater of the separate phase product included in the groundwater of the separate phase product during this event?	ontour n	Yes □ nap?	No ⊠
Has the groundwater flow direction changed more than 45° from the previous ground water contour map? If yes, discuss the reasons for the change.		Yes □	No ⊠
Has groundwater mounding and / or depressions been identified in the groundwater contour map? Unless the groundwater mounds and / or depressions are caused by the groundwater remediation system, discuss the reasons for the occurrence.	Yes ⊠	No □	
Are all the wells used in the contour map screened in the same water-bearing zone? If no, justify inclusion of those wells. - Consistent with historical practice. Wells that did not have screens that into moderately conductive zone including SS (Port 1), WW (Port 1), XX (Port 1) CCCC-S, GGGG (Port 3), IIII-S, and JJJJ-O were selected based on screen correlated in depth to adjacent wells that had a screen that did intersect the	, ZZ (Po depth t	the upport 1), A	AAA-S
Were the groundwater contours □ computer generated □ computer aided, or ☑ hand-drawn? If computer aided or generated, identify the interpolation method(s) used.	zone.		
Pfizer Inc Sour	ce: NJD	EP 03/9:	- 5

Pfizer Inc Bound Brook Facility

1

Contour Map Reporting Form

Figure 4-3: Impound 8 - Semi-Annual Monitoring Shallow Bedrock Wells Groundwater Contour Map (April 25, 2011)

This reporting form shall accompany each groundwater contour map submittal. Use additional sheets as necessary.

1.	Did any surveyed well casing elevations change from the previous sampling event? If yes, attach new "Well Certification-Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc)	Yes □	No ⊠			
2.	Are there any monitoring wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? If yes, identify these wells.		Yes □	No ⊠		
3.	Are there any monitoring wells present at the site but omitted from the contour map? Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.		Yes □	No ⊠		
4.	Are there any monitoring wells containing separate phase product during this measuring event?		Yes □	No ⊠		
	Were any of the monitoring wells with separate phase product included in the groundwater contour map? If yes, show the formula used to correct the water table elevation.					
5.	Has the groundwater flow direction changed more than 45° from the previous ground water contour map? If yes, discuss the reasons for the change.		Yes □	No ⊠		
6.	Has groundwater mounding and / or depressions been identified in the groundwater contour map? Unless the groundwater mounds and / or depressions are caused by the groundwater remediation system, discuss the reasons for the occurrence.	Yes □	No ⊠			
7.	Are all the wells used in the contour map screened in the same water-bearing zone? If no, justify inclusion of those wells.	Yes □	No ⊠			
8.	Were the groundwater contours ☐ computer generated ☐ computer aided, or ☑ hand-drawn? If computer aided or generated, identify the interpolation method(s) used.					

Source: NJDEP 03/95

SEMI-ANNUAL GROUNDWATER MONITORI	NG FIRST HALF 2011 APPENDICES
	APPENDICES

Appendix A

Procedures

FLUTe® Procedures

MANUAL WATER LEVEL MEASUREMENT PROCEDURE

Manual water level measurements will be collected from monitoring wells and Water FLUTe installations, not equipped with dedicated pressure transducers, in accordance with the procedures called out below.

Procedures Applicable to Water Level Data Collection at all Locations

- A new pair of latex gloves will be donned.
- The electronic water level probe will lowered into the casing/tube until the meter indicates water is reached (audible alarm).
- The probe will be raised above the water level and slowly lowered again until water is indicated.
- The cable will be held at the point designated for water level measurements (top of casing reference point) and a depth reading taken.
- This procedure will be followed three times or until a consistent value is obtained.
- The value will be recorded to the nearest 0.01 feet in a field notebook.
- The time of the measurement and the reference point will be recorded in a field notebook.
- The probe will be raised to the surface and, together with the amount of cable that was wetted in the well, will be decontaminated as follows:
- 1. Wiped dry with paper towel.
- 2. Rinsed with potable water and laboratory detergent.
- Rinsed with distilled/deionized water.

Procedures Specific to Water Level Data Collection at Water FLUTe Installations

Due to the check valve in the pumping system, the water level in the ½" tube may be higher than the actual head in the formation if the system has not been purged. As such, head measurements must be made after purging the pump system. Each sampling port must therefore be purged prior to water level collection in accordance with the following procedure:

- Connect the compressed nitrogen tank to the quick connect fitting on the ½ inch diameter side of the pump tube.
- Open the valve on the nitrogen tank and adjust the pressure (typically on the order of 100 psi.) to the manufacturers recommended pressure for purging at the installation of interest. Note: All sample ports may be purged simultaneously using a header assembly available through FLUTe.

- Purge the pump tube until the nitrogen gas is discharging from the sampling side of the pump tube (small side of the tube).
- Release the nitrogen tank pressure and disconnect from the quick connect fitting.
- Using a "slime-line" water level meter (probe must be less than 3/8 inch diameter), pass the probe through the quick connect fitting and down the ½ inch diameter tube. (Water level meters suitable for this purpose can be obtained from Herron Instruments).
- Continue measurements until the water level has stopped rising. Record the final measurement. (This typically takes 7 to 8 minutes depending on the hydraulic conductivity of the formation).

Notes: The above procedure is suitable for depths to water of less than approximately 150 feet below the measuring point. For water tables greater than this depth, pressure transducers are required. The water level meter must not have weights below the measuring point as the weight will displace the water in the tube and provide an inaccurate measurement. Additional sampling and purging information may be found at http://www.flut.com/

For a medley of innovative designs

6 Easy St., Santa Fe, NM 87504 505-455-1300, www.flut.com

Sampling guidelines for Water FLUTe systems

(valve tubing pumping system) rev. 2/23/04

Water flow

Water flows from the formation into the spacer pore space, into the port, and fills the tubing. The first tube filled is the "port tube" volume that flows into the U tube. The U tube consists of the "large tube volume" and the "sampling tube volume" (see the attached drawing).

Purging

Water is pumped from the tubing by applying a gas pressure to the interface at the static water level in the large tube. The water is driven down in the large tube and up through the second check valve to the surface via the sampling tube. By driving the water with a sufficient gas pressure to drive all of the water in the large tube and the sampling tube to the surface (the "recommended purge pressure"), the water in the U tube is nearly all expelled. The purge stroke is complete when gas is expelled following the water flow. The pressure in the system must then be vented, to allow the U tube to refill by flow via the port tube. The flow from the port tube consists of the port tube water, the water in the pore space of the spacer, and water from the medium. Because of the relatively large volume in the large tube, most of the recharge is from the medium. The recharge will take about as long as the first purge stroke. However, a tight medium will require more time.

Purging the U tube a second time will remove any of the water that has resided in the spacer and port tube volume. That is highly recommended, since the water resident in the tubing and spacer is probably not typical of the formation water. If the refill has been prompt, the second purge water volume will be similar to the first stroke. If in doubt, or if in a sedimentary formation or screened well, a third purge stroke is recommended to remove water that may have been in long contact with the liner or spacer.

Sampling

The sampling flow is best driven on the third (or fourth) cycle by a pressure less than that needed to drive air through the bottom of the U tube. The pressure recommended is that which will drive the water to near, but not out of, the bottom of the large tube. That recommended pressure, "the sampling pressure," is calculated in the spreadsheet provided with each system.

The first flow of the sampling cycle sweeps along droplets of water left in the tubing from the purge cycle. That residual water is depleted of volatile components. Tests have shown that the first tube volume of the sample flow should be discarded as depleted in volatiles (the sample tube volume is also calculated in the spreadsheet). Thereafter, the samples can be collected from the tube outflow. The volume to be discarded is shown in the spreadsheet as "wetted vol. sam. tube". The sample water flow rate will slow and finally stop. That occurs as the water column being driven approaches the applied pressure. The typical sampling pressure drives to within 20 ft. of the bottom of the pump tube (the U).

This procedure should provide an ample sample of good quality drawn directly from the formation.

Caution: If the pumping system refills very slowly, there may not be sufficient water in the pump to fill the "sample tube" to the surface when the stroke is performed. In that case, there will be spitting of gas from the sample water and it will be followed by a flow of gas only. The sample water should never show "spitting" and the stroke should never end with gas flow from the sample tube. The proper sample flow will slow until it stops flowing. Should this evidence of insufficient recharge be observed, allow the pump to refill for a longer time. One can tag the water level in the large tube, as described in the head measurement procedure, to assure that the pumping system has been sufficient refilled.

Measuring the head in the system

The water level in the large tubes may not be the current water level. After sampling, if there is any leakage of the second check valve (sand in the tube, etc...) the water in the sample tube can backflow into the larger tube, adding to the water that fills the large tube during the recharge. Also, if the water level in the formation is dropping between head measurements, the water level in the large tube will not follow the descent if the first check valve is a good seal. For these two reasons, and for the freezing concern below, it is

best to <u>finish the sampling stroke by raising the pressure to the purge</u> <u>pressure value</u> to purge the pumping system of all water. Then upon refilling, the level is the current head for each port. If head measurements are made between sampling events, <u>each port's pumping system should be first be purged</u> to allow the tubing to refill to the current head value.

Note, an access tube is provided for tagging the water level in the interior of the liner. The liner water level should be maintained at the proper level (typically 10 ft above the water table, except for more shallow water tables) to assure that the liner is providing a good seal. If the level is less than that desired, add a small amount of water to raise the level. Be aware that for deep water tables, it may take up to 5 minutes for the water level to equilibrate after an addition. Do not overfill the liner. Estimate the correct addition based upon the hole diameter.

If the water might freeze in the sampling tubing near the surface, purge the entire volume of water from each sampling line, after sampling, before leaving it. Use the recommended purge pressure to remove all water, not the sampling pressure. Each line should be blowing air/N2 when the purge is complete. If the lines were purged after sampling for head measurements, that is sufficient.

If the Water FLUTe uses PVDF tubing, the purge of the entire system after sampling should not be neglected, even if head measurements are not to be made. This removes the water column in the sampling tube. For deep water tables, the long term pressure of the standing water in the sampling tube might lead to excessive creep of the tubing which is susceptible to "cold flow", a characteristic of Teflon like materials. (This is not a concern except for very deep water tables (>300 ft).

In most cases, the performance of a final purge of the system after sampling is useful, even if not essential.

Simultaneous purge and sampling of all tubes

The FLUTe pumping system for each port is essentially identical in length, pump volume and elevation in the hole. This allows all ports to be purged and sampled simultaneously for a great saving in sampling time. The only difference for simultaneous sampling is that the pressure source must

include a tube to each port fitting at the wellhead. The recommended purge and sample pressures are the same as used for single port sampling.

In some cases, the buoyancy of the sampling system is so great when emptied of water during the simultaneous purge that the tubing bundle can cause the liner to invert. The sampling volume spreadsheet provided with the liner notes whether the system can be purged simultaneously. This is only a problem for smaller hole diameters, many ports, and a small excess head in the liner. However, increasing the excess head in the liner to overcome the buoyancy of the tubing can be a hazard to the liner.

A short summary is provided as the following checklist:

Check List

1. Connect the gas driver source to the gas drive tube on the large tube. Set the regulator to the recommended purge pressure.

2. Expel the tube water at the suggested purge pressure. Collect the purged water volume for verification of a good purge. Note the water flow time of the purge stroke.

3. Allow the tubing to refill. Repeat the purge. Collect the purge volume to assure the amount removed is at least the "port tube volume". Was the refill long enough?

4. Purge a third time, if desired.

5. Allow the tubing to refill for the sample stroke.

6. Reduce the driving pressure to the "sampling pressure". Apply the pressure and collect the first flow to measure the discard volume. Discard that water.

7. Reduce the pressure, if needed, to slow the flow and collect the samples.

8. Perform a final purge of the water out of the sampling lines by raising the driving pressure to the purge pressure value.

9. When the sampling system has refilled, tag the water level, if desired, for the current water table. If a port system is refilling very slowly, tag it at a later time.

See the spreadsheet provided with each *Water FLUTe* for the recommended purge and sampling pressures. Those are the pressures that can be used for

a simultaneous purge of the several ports, but be sure that the buoyancy of the tubing will not lift the tubing, and the wellhead. The spreadsheet flags the condition where all ports should not be purged simultaneously. In most cases, several of the ports can be purged simultaneously.

Optimum sampling procedure:

Since it is often desirable to minimize the amount of time that the sample water resides in the pumping tubing, it is useful to note the actual time that is required for the recharge of the system. Since the fill rate slows dramatically for the last portion of the recharge, it is not necessary to wait for a complete refill. For most formations, the recharge is dominated by the tubing pressure drop. In that case, the time required for the purge stroke to be completed is about the same time required for the refill. (The exception is for a tight formation that recharges the tubing very slowly.) Hence the second purge can be started after waiting the same length of time as the first purge endured. If the second purge is of a similar volume (usually somewhat less) than the first purge volume, the refill time was long enough. After the same delay, the sampling stroke can be initiated. This timing of the strokes allows one to reduce the retention time in the pumping system. For very large sample volumes produced, the refill time can be shortened even more, as long as the sample volume is adequate after the discard of the first flow.

In some situations, the retention time is still too long. FLUTe can often increase the sample tube and port tube diameters for greater flow rates. However, the standard design is well matched for to a wide range of hole diameters, depths, and water table elevations. For very deep wells, the tubing may need to be of higher pressure capacity for the required driving pressures. For water table depths below 700 ft., this may be a concern. In some situations, the use of more expensive fluoropolymer (e.g. PVDF) tubing is warranted to minimize interaction with very low levels of contamination. The normal FLUTe tubing used until June, 2002 was Nylon 11 for its qualities of strength, relatively low contaminant absorption(compared to polyethylene), cost, and elasticity. Nylon 11 does leach butyl benzene sulphonamide in ppb levels. This does not interfere with most contaminant evaluations, in particular the chlorinated solvents and volatile organics. It can be mistaken for HE contamination if not measured carefully. FLUTe initiated a design change to all PVDF tubing in the Water FLUTe systems in 2002 to avoid any concern about tubing interaction with

the sample water. However, the prescribed purge is sufficient for the use of Nylon tubing systems.

Questions: Call 888-333-2433 and ask for Carl Keller, or a field engineer.

Geometry of sampling system for each port

Fig. 1.. Water FLUTe valved tubing pumping system (Recharge flow)

Fig. 2. Water FLUTe Pump Stroke

WATER FLUTE CONSTRUCTION, PURGE VOLUMES AND SAMPLING GUIDELINES

	DI LITTE GILLION	Depth# to	Depth to	Port 1		Port 2	2	Port 3		Port 4	
Well	Liciteriumg	liquid inside	FL.UTe	Volume [Gal]	Recovery	Volume [Gal]	Recovery	Volume [Gal]	Recovery	Volume [Gal]	Recovery
	and a	FLUTe [ft]	collar [ft]	Per stroke 'Total ume* [min]		Per stroke Total ime* [min]		Per stroke Total time* [min]		Per stroke Total time* [min]	time* [min]
3333	Water					· · · · · · · · · · · · · · · · · · ·					
FFFF	Water										
9999	Bentonite										
SS	Barite/Bentonite										
JML	Water									**	
WW	Barite/Bentonite										
×	Barite/Bentonite										
YY	Bentonite										
77	Barrite/Bentonite										
MP03-MP1	Barite/Bentonite										
MW05-MP1	Barite/Bentonite										
MP11-MP1	Barite/Bentonite										

Measured with a conventional water level indicator, by introducing the probe into the 6" FLUTe liner. All depths referred to TOC marker.

*Time required for water level to recover to 20' (or less) below the static water level.

SAMPLING GUIDELINES:

A. It takes 400 ft. of N2 (5 small bottles, 80 ft. ca (recommended) or 2 "T" bottles (300 ft. cas) for each sampling event at the 12 FLUTe wells.

B. Each port must be purged two times before sampling. Except port 3 at Well XX, which must be purged just once.

C.The pressure for the purge strokes is 110 psi; the sampling stroke is 75 psi. Each stroke takes between 6 and 10 minutes.

D.It takes about two hours to purge and sample each well following these steps:

1. Set and secure the end of sampling line (1/8") for each port into a plastic container to keep track of the purge volume.

2. Connect the manifold to the N2 tank and to each of the port's pressurization lines (1/2" quick-disconnect fittings). Make sure fittings click together.

3. Close the 5 one-way valves in the manifold and set the three-way valve to allow from the tank to the ports.

4.Open the N2 tank valve and set the regulator to 110 psi. Always keep away from the well head when the N2 tank valve is open; if any accidental blow occurs, close the N2 tank valve before doing anything

5. Purge all the ports at the same time, by opening the one-way valves of the lines connected to the ports, and waiting until N2 starts to blow from all the sampling lines. At this time, bleed the N2 from the ports by setting the three-way valve to the position open to the atmosphere, which makes a distinctive gas flow sound. No other valve needs to be adjusted. 6. Complete the second purge after the longest recovery time at any port (as stated in the table above) has been reached. Reset the three-way valve to allow N2 flow from the tank to the ports, and wait until N2 starts to blow from all the sampling lines.

7. Close all the one-way valves. Reduce the regulator pressure to 75 psi; you will need to bleed some N2 by briefly opening the three-way valve to the atmosphere.

8. Sequentially sample each port, by opening the corresponding one-way valve, discarding the first 1/2 Gal pumped, and starting with any filtered sample (to avoid blowing off the filter with N2 in the event that you run short of water from the port.)

9. After sampling is completed, close the N2 ank valve, open all the one-way valves, and bleed the N2 still remaining in the ports, by setting the three-way valve to the atmosphere.

10. Wait until the N2 has bled off; then disconnect the manifold from the well.

hours later to purge P3 for the second time; move to another well again and return to well TT after other 1.5 hours to sample P3. For well XX, P3 must be sampled 7 hours after the (first and only) purging stroke is the same as the other wells. After 15 minutes, P1 and P2 must be purged again. After 15 more minutes, P1 and P2 can be sampled. Then, move to sample another well, and return to well TI 1.5 11. Wells IT and XX are exceptions to the above procedure. Both should not be scheduled to be sampled the same day. Both should be scheduled for purging first thing in the morning. The first purpe

Sampling and Analysis Plan Addendum Bound Brook Facility Pfizer Inc

This document serves as an addendum to the Sampling and Analysis Plan (SAP) (O'Brien & Gere, October 2001) associated with the semi-annual site-wide groundwater monitoring program at the Former American Cyanamid Company (Cyanamid) Site in Bound Brook, New Jersey. This addendum provides sampling methods for use when collecting groundwater samples for volatile organic compounds (VOCs) using passive diffusion bags (PDBs).

Background

The groundwater monitoring program for the Cyanamid site includes site-wide groundwater pumping and monitoring of site-wide wells, as well as the groundwater monitoring requirements for the Impound 8 Resource Conservation and Recovery Act (RCRA) Facility. Elements of the October 2001 SAP were prepared in accordance with the Administrative Consent Order (ACO) between the Cyanamid and the New Jersey Department of Environmental Protection (NJDEP), as amended in May 1994 (ACO Amendment).). Cyanamid was acquired by American Home Products Corporation (AHP), more recently known as Wyeth, in November 1994. Pfizer Inc (Pfizer) acquired Wyeth in October 2009, and is now responsible for overseeing the monitoring program.

An element of the October 2001 SAP consisted of a description of monitoring well purging and sampling methods. One of the methods described included of the use of a peristaltic pump to purge and sample groundwater from the following shallow overburden monitoring wells (Impoundments 1 & 2 and Main plant wells were added voluntary):

<u>Impoundments 1 & 2 wells:</u> PZ-12-1, PZ-12-2, PZ-12-3, PZ-12-4, PZ-12-5, PZ-12-6, 01-

MW-1, 01, MW-2, 01-MW-3, FLOD-W1S, and FLOD-W2S

Impoundment 3, 4, and 5 wells: MW-2, MW-3, MW-5, MW-7, MW-9, and 28R

Impoundment 14 wells: 19R, 21-R, and O-R

Impoundment 17/18 wells (Group II): AAA, CCC-R, EEE-R, III, KKK, and 16 MW-2

<u>Impoundment 19/24 wells</u>: 32R, 34R, 36R, 38R, 41R, 42R, TFP-94-1R, and P24-91-1

Main Plant Wells: MW-1A and MW-22R

During the first and second half sampling events, groundwater samples are collected from overburden monitoring wells as summarized on Table 1:

Table 1						Require	ed Analys	es			
Well I.D.	VOCs	SVOCs	TAL Metals	Chlorides	Cyanide				Chromium	Alpha & Beta,	Radium 226 & 228
PZ-12-1*	Х	Х	Х								
PZ-12-2*	Х	Х	Х								
PZ-12-3*	Х	Х	Х								
PZ-12-4*	Χ	Х	Х								
PZ-12-5*	X	Х	Х								
PZ-12-6*	X	X	Х								
01-MW-1*	Х	Χ	X								
01-MW-2*	Х	X	X								
01-MW-3*	X	Χ	Х								
FLOD-W1S*	X	Χ	X								
FLOD-W2S*	Х	Χ	X								
MW-1A*	Х	Χ	X	Χ	Χ	X					
MW-22R*	Х	Χ	X	Χ	X	Х					
19-R	Х	Χ									
21-R	Χ										
O-R	Х										
AAA	Χ	X	X	Χ	Х	Х					
CCC-R	Х	Χ	X	Χ	Χ	X					Χ
EEE-R	Х	Х	X	Χ	Х	Х					Χ
III	Х	Х	X	Χ							
KKK	Χ	X	X	Χ							Χ
16MW-2			X								
28R	X	X									
MW-2	Х	Х		Χ			Х	Х			
32R	Χ						X	Х			
34R	X	Х					Х				
38R	Х	Х		Χ			Х	Х	Χ		
42R	Χ	Х					Х				
TFP-94-1R	X	Х					Х			<u> </u>	

Note: * - Monitoring wells added voluntary.

A comment regarding the use of peristaltic purge and sample methods to sample the overburden monitoring wells was received from NJDEP regarding the Fourth Quarter Groundwater Monitoring Report (O'Brien & Gere, January 2005). Specifically, the NJDEP comment indicated that the peristaltic purge method may result in significant loss of volatile organic compounds from samples before the analysis and that submersible purge method or any other comparable method shall be used.

In response to the NJDEP comment, Pfizer proposed the use of PDBs when collecting VOCs from the overburden monitoring wells to minimize the potential for loss of VOCs, and using peristaltic purge and sample methods for the remaining parameters. The following describes the PDB installation and retrieval, and sample collection methods to be used when collecting VOCs from the overburden monitoring wells.

PDB installation and retrieval, and sample collection

Passive-Diffusion Bag Sampler Installation

- Step 1: Don appropriate personal protective equipment (as required by the Health and Safety Plan).
- Step 2: Place plastic sheeting around the well (optional, based on field conditions at the time of sampling).
- Step 3: Clean the non-disposable, down-hole monitoring equipment (e.g., water-level probe).

- Step 4: Measure and record the depth to water in the well on the groundwater sampling log and in the field logbook. Check to make sure there is sufficient water column within the well so that the PDB will be fully submerged.
- Step 5: Remove the PDB sampler from the shipping container.
- Step 6: Attach the PDB sampler to the line of the well-specific passive bag harness using the stainless-steel snap hooks.
- Step 7: Slowly lower the PDB sampler down the well and attach the harness to the top of the well. The harness for the PDB may be secured to the top of the well using an S-hook or plastic disk that is of larger diameter than the well casing. If infiltration of outside water is a concern, a gripper plug or j-plug may be used to seal the top of the inner well casing. Check that the bottom stainless-steel weight just reaches the bottom of the well indicating that the sampler is properly positioned in the screened interval. The passive bag sampler will generally be placed at the midpoint of the saturated portion of the screened interval of the well. Table 2 provides a summary of the overburden well depths, screen lengths, and installation depths at which the PDBs should be placed within each well. Record time of PDB deployment and weather conditions on the groundwater sampling log and in the field logbook.

Table 2	Well Depth	Screen Length	Installation Height of Top of PDB
Well I.D.	(ft BTOC)	(ft)	Above Bottom of Well (ft)
Impoundment 1 & 2			
PZ-12-1	14.7	10	11.2, 6.2*
PZ-12-2	14.9	10	11.4, 6.4*
PZ-12-3	15.0	10	11.5, 6.5*
PZ-12-4	16.8	10	13.3, 8.3*
PZ-12-5	14.9	10	11.4, 6.4*
PZ-12-6	15.2	10	11.7, 6.7*
01-MW-1	15.4	NA	11.9, 6.9*
01-MW-2	18.1	NA	14.6, 9.6*
01-MW-3	17.5	NA	14.0, 9.0*
FLOD-W1S	17.4	5	3.5
FLOD-W2S	12.4	5	3.5
Main Plant			
MW-1A	20.8	5	3.5
MW-22R	27.7	5	3.5
Impoundment 3, 4, & 5			
28R	17.8	5	3.5
MW-2	21.1	15	3.3, 9.3
Impoundment 14			
19-R	11.6	5	3.5
21-R	22.6	5	3.5
O-R	17.9	5	3.5
Impoundment 15, 16, 17 & 18			
AAA	16.8	5	3.5
CCC-R	26.5	5	3.5
EEE-R	25.1	5	3.5
III	19.8	5	3.5
KKK	28.3	5	3.5
Lagoon 6&7 / Impoundment 19&24			
32R	20.4	5	3.5
34R	26.3	5	3.5
38R	25.6	5	3.5
42R	24.2	5	3.5
TFP-94-1R	19.1	8	5

Note: ft BTOC - feet below top of casing

Impoundments 1 & 2 and Main plant wells were added voluntary

- Step 8: Close and lock the well.
- Step 9: Record the date and time of placement of the PDB sampler in the well in the field logbook.

Passive-Diffusion Bag Sampler Retrieval and Sample Collection

- Step 1: After the equilibration period, unlock and open the well. Slowly remove the PDB sampler from the monitoring well.
- Step 2: Remove the PDB sampler from the stainless-steel snap hook and dry with a clean paper towel. Cut a small hole in the PDB sampler using a decontaminated knife or decontaminated stainless-steel scissors. Pour water from the PDB sampler directly into appropriate laboratory sample container for VOC analysis.
- Step 3: Complete the sample label and place sample container in a cooler containing wet ice.
- Step 4: Record the date and time of sample collection on the chain of custody and in the field logbook. In addition, record in the field log, any pertinent observations of the sample (e.g., physical appearance, the presence of, or lack of, odors, sheens, etc.), and the values of the field indicator parameters, if measured.
- Step 5: Attach a new PDB sampler to the dedicated harness and reinstall in the monitoring well after sampling activities are complete (Optional: PDB samplers may be installed at a later date given that sampler installation is complete at least 2 weeks before sampling is scheduled). Close and lock the monitoring well.

Appendix B

Field Sampling Logs

Appendix B

Field Sampling Logs

First Half 2011 Groundwater Monitoring Passive Difusion Bag Specifications and Summary Pfizer Inc. Bound Brook Remediation Program

Wallin	Well Depth	Screen Length	Number of	Installation Height of Top of PDB	Semi-annual	Deployment	WL	Comment
Well I.D.	(ft BTOC)	(ft)	PDBs Installed	Above Bottom of Well (ft)	Required	Date	Measured	
Impoundment	1 & 2							
PZ-12-1	14.7	10	2	11.2, 6.2*	1/2	4/7/2011	5.00	2 bags installed**
PZ-12-2	14.9	10	2	11.4, 6.4*	1/2	4/7/2011	5.40	2 bags installed**
PZ-12-3	15.0	10	2	11.5, 6.5*	1/2	4/7/2011	4.30	2 bags installed**
PZ-12-4	16.8	10	2	13.3, 8.3*	1/2	4/7/2011	4.50	2 bags installed**
PZ-12-5	14.9	10	2	11.4, 6.4*	1/2	4/7/2011	3.80	2 bags installed**
PZ-12-6	15.2	10	2	11.7, 6.7*	1/2	4/7/2011	4.45	2 bags installed**
01-MW-1	15.4	NA	2	11.9, 6.9*	1/2	4/7/2011	6.05	2 bags installed**
01-MW-2	18.1	NA	2	14.6, 9.6*	1/2	4/7/2011	6.60	2 bags installed**
01-MW-3	17.5	NA	2	14.0, 9.0*	1/2	4/7/2011	3.60	2 bags installed**
FLOD-W1S	17.4	5	1	3.5	1/2	4/7/2011	7.50	
FLOD-W2S	12.4	5	1	3.5	1/2	4/7/2011	6.25	
Impoundment	3, 4, & 5							
28R	18.1	5	1	3.5	1/2	4/7/2011	4.60	
MW-2	21.4	15	2	3.8, 9.8	1/2	4/7/2011	8.20	
Impoundment	14							
19-R	11.9	5	1	3.5	1/2	4/7/2011	3.55	
21-R	22.5	5	1	3.5	1/2	4/7/2011	17.90	
O-R	17.4	5	1	3.5	1/2	4/7/2011	5.20	
Impoundment	15, 16, 17 &	18						
AAA	16.8	5	1	3.5	1/2	4/7/2011	5.00	
CCC-R	26.6	5	1	3.5	1/2	4/7/2011	14.80	3 bags installed*
EEE-R	25.1	5	1	3.5	1/2	4/7/2011	13.40	
Ш	19.8	5	1	3.5	1/2	4/7/2011	4.25	
KKK	28.3	5	1	3.5	1/2	4/7/2011	13.85	
Lagoon 6&7 /	Impoundment	t 19&24						
32R	20.8	5	1	3.5	1/2	4/7/2011	8.45	
34R	27.7	5	1	3.5	1/2	4/7/2011	16.65	
38R	26.7	5	1	3.5	1/2	4/7/2011	14.85	
42R	24.3	5	1	3.5	1/2	4/7/2011	13.30	
TFP-94-1R	20.0	8	1	5	1/2	4/7/2011	5.80	
Main Plant								
MW-1A	20.8	5	1	3.5	1/2	NA	NA	Sampled on 4/30/11 via pumping
MW-22R	27.7	5	1	3.5	1/2	NA	NA	Sampled on 4/30/11 via pumping
Motoo								

Notes:

ft BTOC - feet below top of casing

Water levels measured day of deployment of PDBs.

NA - Not Applicable. See comments

^{* -} bags installed at the same depth for QC purposes

^{** -} upper and lower screen portion

1.	Site: Former American Cyanmid	
2.	Location: Bound Brook, NJ	
á.	Well Designation: PZ-12-1	
4.	Well Permit Number: 25-56205	
		(Zavet) Distribute
		April Court (Little pages)
	ili ili digiling hila sini bilah albumali dada birus	
		Charges (1915) - Commission (1916) (1916) (1916) (1916) (1916) (1916) (1916) (1916) (1916) (1916) (1916) (1916)
	Conser Size (Mill)	Same and the NA
4.4	D-t T + D-ml	Date: 4/3/11 Time: 1340
	Date and Time of Deployment Depth to Ground Water	
	Date and Time of Retrieval	Depth to ground water at time of deployment 5.0 FT Date: 9/18/11 Time: 0800
	Depth to Ground Water	Depth to ground water at time of deployment 4.13 FT Retrieval
	Type of Deployment Line Used	Diameter: 1/8" Material: 140# SS Stranded Cable Coated With Teflon
	Type or Boployman Line Code	Material.
		Justine drawing and accompanies and accompanies
		Taran darah darah kembanan merupak darah kembanya banya darah banya darah beranda darah darah banya darah beranda darah darah beranda darah dara
	fire wallian of P. (424)	Compression And Compression Co
		Distriction of the company of the contract of
		TO MANY CONTROL OF THE STREET CONTROL OF THE
	and the state of t	
24.	If the saturated portion of the well	No, this well is being profiled during this sampling round
	screen or open hole is greater than 5 feet, has the well been vertically	☐ Yes, this well was profiled already. Date when well was profiled:
	profiled to assess the potential for	; · · · · · · · · · · · · · · · · · · ·
	contaminant stratification?	ı
25.	If the saturated portion of the well	□ No, flow testing has not been conducted in this well
	screen or open hole is greater than 10 feet, has the well been flow tested to	☐ Yes, flow testing of this well was conducted. Date of testing:
	assess the potential for vertical flow to	Type of flow meter used:
	be present within the well?	Measurements taken everyfeet [Please Attach Results]
	Weather Conditions During Deployment	Temp. <u>SO°F</u> Wind <u>light</u> □ Sunny S Overcast □ Raining □ Snowing
27.	Weather Conditions During Retrieval	Temp. <u>54 F</u> Wind □ Sunny ♣Overcast □ Raining □ Snowing
		Anni Tru T

1. Site: Former American Cyanmid	
2. Location: Bound Brook, NJ	
3. Well Designation: PZ-12-2	
4. Well Permit Number: 25-56206	
	$ar{m{\omega}}$ to a constant of the property of $m{v}$ is the $m{v}$ and $m{v}$ and $m{v}$ is the $m{v}$ and $m{v}$ is the $m{v}$
S. Park Suffer Wales	7500 D. Ulliantiza
To a college of the south and the south	Fire Olivery (100 termes)
	. The contract \mathcal{L} is the first of \mathcal{L} in the contract \mathcal{L} in \mathcal{L} in \mathcal{L}
	Chroni 27 Maria 7:22 Titata San Tiduna (1991
44 D.A	- 4/2/11 - 1266
14. Date and Time of Deployment	Date: 4/7/11 Time: 1355
15. Depth to Ground Water16. Date and Time of Retrieval	Depth to ground water at time of deployment 5.4 FT Date: 5/18/11 Time: 0859
17. Depth to Ground Water	Depth to ground water at time of deployment 4.93 FT VETTICNA
18. Type of Deployment Line Used	Diameter: 1/8" Material: 140# SS Stranded Cable Coated with Teflon
10. Type of Boploymone and Cood	Hateria,
	Carrier Carrier Control of the Carrier
CALIFORNIA CHARLES	
	and the firm of the contract o
	Linguist 13 Charakitik (12
24. If the saturated portion of the well screen or open hole is greater than 5	No, this well is being profiled during this sampling round
feet, has the well been vertically	☐ Yes, this well was profiled already. Date when well was profiled:
profiled to assess the potential for contaminant stratification?	·
COMERNICATIC SHAURCAROTTS	•
25. If the saturated portion of the well	□ No, flow testing has not been conducted in this well
screen or open hole is greater than 10 feet, has the well been flow tested to	☐ Yes, flow testing of this well was conducted. Date of testing:
assess the potential for vertical flow to be present within the well?	Type of flow meter used:
oe present within the well?	Measurements taken every feet [Please Attach Results]
26. Weather Conditions During Deployment	Temp. 50 F Wind light □Sunny ★Overcast □Raining □Snowing
27. Weather Conditions During Retrieval	
21. Headie Colidions Duling Retireval	Temp. <u>GOF</u> Wind <u>drizele</u> □ Sunny D Overcast □ Raining □ Snowing
	etititionely (seemen entitiesely)
	Dathwe.
en e	515 (515) (515) (515) (515) (515) (515)
	art 17 mar i primir

4	Site: Former American Cyanmid	
1. 2.	Location: Bound Brook, NJ	
3.	Well Designation: PZ-12-3	
4.	Well Permit Number: 25-56207	,
		Vitalia III i i i i i i i i i i i i i i i i i
		[] Decertification of Control Research
14.	Date and Time of Deployment	Date: 4/7// Time: //30
	Depth to Ground Water	Depth to ground water at time of deployment 4.30 FT
16.	Date and Time of Retrieval	Date: <u>5 / 18 / 1/</u> Time: /335
17.	Depth to Ground Water	Depth to ground water at time of deployment 3.60 FT ROTTIEVA
18.	Type of Deployment Line Used	Diameter: 1/8" Material: 140# SS Stranded Cable Coated With Teffon
		A Transport of the Control of the Co
24.	If the saturated portion of the well	No, this well is being profiled during this sampling round
	screen or open hole is greater than 5 feet, has the well been vertically	☐ Yes, this well was profiled already. Date when well was profiled:
	profiled to assess the potential for	
•	contaminant stratification?	
25.	If the saturated portion of the well	□ No, flow testing has not been conducted in this well
	screen or open hole is greater than 10 feet, has the well been flow tested to	☐ Yes, flow testing of this well was conducted. Date of testing:
	assess the potential for vertical flow to	Type of flow meter used:
	be present within the well?	Measurements taken everyfeet [Please Attach Results]
	Manakar Candidana Busina Basilasa	Temp. 50°F Wind 11927 □ Sunny 🗷 Overcast □ Raining □ Snowing
	Weather Conditions During Deployment	
27.	Weather Conditions During Retrieval	Temp. Warm Wind LT byceze □ Sunny NOvercast □ Raining □ Snowing
		United by the second of the se
		cue ————————————————————————————————————

1	Site: Former American Cyanmid	
2.	Location: Bound Brook, NJ	
	Weil Designation: PZ-12-4	
	Well Permit Number: 25-56208	
		<u>. A</u> frikus — Alekska Joseph A. Henrich and Arthur Andrewska (1996)
		Carrie Carrier
		Production of the control of the con
		Alle Percent desertions and the second of the contract of the
14.	Date and Time of Deployment	Date: 4/7/11 Time: 1405
	Depth to Ground Water	Depth to ground water at time of deployment 4.50 FT
	Date and Time of Retrieval	Date: 5/18/11 Time: 1043
	Depth to Ground Water	Depth to ground water at time of deployment <u>1.57 pr</u> Retified a/ Diameter: 1/8" Material: 140# SS Stranded Cable Coated With Teflon
18.	Type of Deployment Line Used	Diameter: 1/8" Material: 140# SS Stranded Cable Coated With Teflon
	Territor Filipia Linne	Tierfier thereis in the committee of the
	4, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Augustinia (1994) Augustinia (
		Usaka orakin albaka en kurustariak
		Marian interior de la la la company de la
		. <mark>I b</mark> ila sa kasandan di biri ngara kalam kanakan angkan at mangkan kalamatan a
		Andrew Andrew
24. 1	f the saturated portion of the well	No, this well is being profiled during this sampling round
1 to \$	screen or open hole is greater than 5	☐ Yes, this well was profiled already. Date when well was profiled:
	feet, has the well been vertically profiled to assess the potential for	= 190, the west that profited directly. Date when the was profited.
	contaminant stratification?	
	f the saturated portion of the well	☐ No, flow testing has not been conducted in this well
	screen or open hole is greater than 10 feet, has the well been flow tested to	☐ Yes, flow testing of this well was conducted. Date of testing:
1	assess the potential for vertical flow to	Type of flow meter used:
1	be present within the well?	Measurements taken everyfeet [Please Attach Results]
26 1	Monther Conditions Duvis - Deller :	-
	Weather Conditions During Deployment	Temp. 50°F Wind 119hT □ Sunny ☑ Overcast □ Raining □ Snowing
21.	Weather Conditions During Retrieval	Temp. <u>62°</u> Wind □ Sunny ☑ Overcast □ Raining □ Snowing
	STALLS PARTY	The state of the s

Site: Former American Cyanmid	
2. Location: Bound Brook, NJ	
Well Designation: PZ-12-5	
4. Well Permit Number: 25-56209	
	tos en ligher ar de de grands i a la recial da broglista de propi de mante sue en la color de desta en la casa
	Chrair 77 - Lanca (7 ex. Elbertsber Deutsch 34)
	Bullius Bullius (State Part)
	4/5/
14. Date and Time of Deployment	Date: 4/7/11 Time: 1420
15. Depth to Ground Water	Depth to ground water at time of deployment 3.80 FT Date: 5/18/11 Time: 14/16
16. Date and Time of Retrieval	Date: 5/18/11 Time: 1416 Depth to ground water at time of deployment 3.23 ft Rectrieval
17. Depth to Ground Water 18. Type of Deployment Line Used	Diameter: 1/8" Material: 140# SS Stranded Cable Coated With Teflon
16. Type of Deployment Line Osed	Diameter. Waterial: Train as suggest out of state of stat
	Control of the contro
	[] san riber Thiodhar frys their symfor blanch had of pagingraess
	. Tradition of the factor and the organization of the company of t
	The control of the co
	Language Care Prints The Million Williams
	Let Files (1994)
24. If the saturated portion of the well	
24. If the saturated portion of the well screen or open hole is greater than 5	No, this well is being profiled during this sampling round
screen or open hole is greater than 5 feet, has the well been vertically	
screen or open hole is greater than 5	No, this well is being profiled during this sampling round
screen or open hole is greater than 5 feet, has the well been vertically profiled to assess the potential for contaminant stratification?	No, this well is being profiled during this sampling round Yes, this well was profiled already. Date when well was profiled:
screen or open hole is greater than 5 feet, has the well been vertically profiled to assess the potential for contaminant stratification? 25. If the saturated portion of the well screen or open hole is greater than 10	No, this well is being profiled during this sampling round Yes, this well was profiled already. Date when well was profiled: No, flow testing has not been conducted in this well
screen or open hole is greater than 5 feet, has the well been vertically profiled to assess the potential for contaminant stratification? 25. If the saturated portion of the well screen or open hole is greater than 10 feet, has the well been flow tested to	No, this well is being profiled during this sampling round Yes, this well was profiled already. Date when well was profiled: No, flow testing has not been conducted in this well Yes, flow testing of this well was conducted. Date of testing:
screen or open hole is greater than 5 feet, has the well been vertically profiled to assess the potential for contaminant stratification? 25. If the saturated portion of the well screen or open hole is greater than 10	No, this well is being profiled during this sampling round Yes, this well was profiled already. Date when well was profiled: No, flow testing has not been conducted in this well Yes, flow testing of this well was conducted. Date of testing: Type of flow meter used:
screen or open hole is greater than 5 feet, has the well been vertically profiled to assess the potential for contaminant stratification? 25. If the saturated portion of the well screen or open hole is greater than 10 feet, has the well been flow tested to assess the potential for vertical flow to be present within the well?	No, this well is being profiled during this sampling round Yes, this well was profiled already. Date when well was profiled: No, flow testing has not been conducted in this well Yes, flow testing of this well was conducted. Date of testing: Type of flow meter used: Measurements taken every
screen or open hole is greater than 5 feet, has the well been vertically profiled to assess the potential for contaminant stratification? 25. If the saturated portion of the well screen or open hole is greater than 10 feet, has the well been flow tested to assess the potential for vertical flow to	No, this well is being profiled during this sampling round Yes, this well was profiled already. Date when well was profiled: No, flow testing has not been conducted in this well Yes, flow testing of this well was conducted. Date of testing: Type of flow meter used: Measurements taken every
screen or open hole is greater than 5 feet, has the well been vertically profiled to assess the potential for contaminant stratification? 25. If the saturated portion of the well screen or open hole is greater than 10 feet, has the well been flow tested to assess the potential for vertical flow to be present within the well?	No, this well is being profiled during this sampling round Yes, this well was profiled already. Date when well was profiled: No, flow testing has not been conducted in this well Yes, flow testing of this well was conducted. Date of testing: Type of flow meter used: Measurements taken every
screen or open hole is greater than 5 feet, has the well been vertically profiled to assess the potential for contaminant stratification? 25. If the saturated portion of the well screen or open hole is greater than 10 feet, has the well been flow tested to assess the potential for vertical flow to be present within the well? 26. Weather Conditions During Deployment	No, this well is being profiled during this sampling round Yes, this well was profiled already. Date when well was profiled: No, flow testing has not been conducted in this well Yes, flow testing of this well was conducted. Date of testing: Type of flow meter used: Measurements taken every
screen or open hole is greater than 5 feet, has the well been vertically profiled to assess the potential for contaminant stratification? 25. If the saturated portion of the well screen or open hole is greater than 10 feet, has the well been flow tested to assess the potential for vertical flow to be present within the well? 26. Weather Conditions During Deployment	No, this well is being profiled during this sampling round Yes, this well was profiled already. Date when well was profiled: No, flow testing has not been conducted in this well Yes, flow testing of this well was conducted. Date of testing: Type of flow meter used: Measurements taken every
screen or open hole is greater than 5 feet, has the well been vertically profiled to assess the potential for contaminant stratification? 25. If the saturated portion of the well screen or open hole is greater than 10 feet, has the well been flow tested to assess the potential for vertical flow to be present within the well? 26. Weather Conditions During Deployment 27. Weather Conditions During Retrieval	No, this well is being profiled during this sampling round Yes, this well was profiled already. Date when well was profiled: No, flow testing has not been conducted in this well Yes, flow testing of this well was conducted. Date of testing: Type of flow meter used: Measurements taken every
screen or open hole is greater than 5 feet, has the well been vertically profiled to assess the potential for contaminant stratification? 25. If the saturated portion of the well screen or open hole is greater than 10 feet, has the well been flow tested to assess the potential for vertical flow to be present within the well? 26. Weather Conditions During Deployment 27. Weather Conditions During Retrieval	No, this well is being profiled during this sampling round Yes, this well was profiled already. Date when well was profiled: No, flow testing has not been conducted in this well Yes, flow testing of this well was conducted. Date of testing: Type of flow meter used: Measurements taken every

1. Site: Former American Cyanmid	
Site: Former American Gyarmid Location: Bound Brook, NJ	
3. Well Designation: PZ-12-6	
4. Well Permit Number: 25-562010	
	Place Distriction
	arteriorist transcription of the property of the contract of t
	Blanch FT Breit Peut Kappayake (Rapayake)
14. Date and Time of Deployment	Date: 4/7/11 Time: 14/5
15. Depth to Ground Water	Depth to ground water at time of deployment 4.45 FT
16. Date and Time of Retrieval	Date: 5/18/11 Time: 1327
17. Depth to Ground Water18. Type of Deployment Line Used	Depth to ground water at time of deployment 4.07 FT Refrieva / Diameter: 1/8" Material: 140# SS Stranded Cable Coated With Teffon
16. Type of Deployment Line Osed	Diameter
	A CONTRACTOR OF THE SECOND SEC
	7 million dande freistere der international de la confession de la confess
	Andreas Inches Institutes Institu
24. If the saturated portion of the well	No, this well is being profiled during this sampling round
screen or open hole is greater than 5	• •
feet, has the well been vertically profiled to assess the potential for	☐ Yes, this well was profiled already. Date when well was profiled:
contaminant stratification?	
25. If the saturated portion of the well	□ No, flow testing has not been conducted in this well
screen or open hole is greater than 10	☐ Yes, flow testing of this well was conducted. Date of testing:
feet, has the well been flow tested to assess the potential for vertical flow to	Type of flow meter used:
be present within the well?	Measurements taken every feet [Please Attach Results]
	· · · · · · · · · · · · · · · · · · ·
26. Weather Conditions During Deployment	
27. Weather Conditions During Retrieval	Temp. → Sunny Q Overcast □ Raining □ Snowing
	Compatible 1
	And the second s

Site: Former American Cyanmid	
2. Location: Bound Brook, NJ	
3. Well Designation: 01-MW-1	
4. Weil Permit Number: N/A	
e. Verteran	
14. Date and Time of Deployment	Date: 4/7/11 Time: 1510
15. Depth to Ground Water	Depth to ground water at time of deployment 6, 05 FT
16. Date and Time of Retrieval	Date: 5 118 11 Time: 1040
17. Depth to Ground Water	Depth to ground water at time of deployment 5.33 FT RETRICUAL
18. Type of Deployment Line Used	Diameter: 1/8" Material: 140# SS Stranded Ceble Coated With Teflon
24. If the saturated portion of the well	No, this well is being profiled during this sampling round
screen or open hole is greater than 5	☐ Yes, this well was profiled already. Date when well was profiled:
feet, has the well been vertically profiled to assess the potential for	Les, this was profited alleady. Date wifeli was profited.
contaminant stratification?	
25. If the saturated portion of the well	☐ No, flow testing has not been conducted in this well
screen or open hole is greater than 10	☐ Yes, flow testing of this well was conducted. Date of testing:
feet, has the well been flow tested to assess the potential for vertical flow to	Type of flow meter used:
be present within the well?	Measurements taken every feet [Please Attach Results]
26. Weather Conditions During Deployment	Temp. 50 F Wind 1/9kT □ Sunny ■Overcast □ Raining □ Snowing Temp. □ Sunny ■Overcast □ Raining □ Snowing
27. Weather Conditions During Retrieval	Temp. Warm Wind LT. Ware Sunny Wovercast Raining Snowing
	Control (Control (Con
	Sec. 72.37

1.	Site: Former American Cyanmid	
2.	Location: Bound Brook, NJ	
3.	Well Designation: 01-MW-2	
4.	Well Permit Number: N/A	
		Zanata Caramana
		7 The Particular Control Community
	and the second control of the second	
		e de la companya de La companya de la co
		Orania de Caracia de C
		Bluren 16
		Complete Cong. 1835
14.	Date and Time of Deployment	Date: 4/7/11 Time: 1450
	Depth to Ground Water	Depth to ground water at time of deployment 6.60 FT Date: 5/19/11 Time: 1205
	Date and Time of Retrieval	Date: <u>5/19/0</u> Time: <u>/205</u>
	Depth to Ground Water Type of Deployment Line Used	Depth to ground water at time of deployment 5.88 FT RCTUCJa/ Diameter: 1/8" Material: 140# SS Stranded Cable Coated With Tellon
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Material.
		State Marin State Control of the Con
		The file with the fact with a being the state of the stat
		Carry Services
		Political in referring complyment has that regular or bodies, client intellection
		AND
		and the second s
24.	If the saturated portion of the well screen or open hole is greater than 5	No, this well is being profiled during this sampling round
24.	screen or open hole is greater than 5 feet, has the well been vertically	No, this well is being profiled during this sampling round Yes, this well was profiled already. Date when well was profiled:
24.	screen or open hole is greater than 5	
	screen or open hole is greater than 5 feet, has the well been vértically profiled to assess the potential for contaminant stratification? If the saturated portion of the well	
	screen or open hole is greater than 5 feet, has the well been vértically profiled to assess the potential for contaminant stratification? If the saturated portion of the well screen or open hole is greater than 10	☐ Yes, this well was profiled already. Date when well was profiled:
	screen or open hole is greater than 5 feet, has the well been vértically profiled to assess the potential for contaminant stratification? If the saturated portion of the well screen or open hole is greater than 10 feet, has the well been flow tested to assess the potential for vertical flow to	☐ Yes, this well was profiled already. Date when well was profiled:
	screen or open hole is greater than 5 feet, has the well been vértically profiled to assess the potential for contaminant stratification? If the saturated portion of the well screen or open hole is greater than 10 feet, has the well been flow tested to	☐ Yes, this well was profiled already. Date when well was profiled: ☐ No, flow testing has not been conducted in this well ☐ Yes, flow testing of this well was conducted. Date of testing:
25.	screen or open hole is greater than 5 feet, has the well been vértically profiled to assess the potential for contaminant stratification? If the saturated portion of the well screen or open hole is greater than 10 feet, has the well been flow tested to assess the potential for vertical flow to	☐ Yes, this well was profiled already. Date when well was profiled: ☐ No, flow testing has not been conducted in this well. ☐ Yes, flow testing of this well was conducted. Date of testing:
25.	screen or open hole is greater than 5 feet, has the well been vértically profiled to assess the potential for contaminant stratification? If the saturated portion of the well screen or open hole is greater than 10 feet, has the well been flow tested to assess the potential for vertical flow to be present within the well?	☐ Yes, this well was profiled already. Date when well was profiled: ☐ No, flow testing has not been conducted in this well ☐ Yes, flow testing of this well was conducted. Date of testing: Type of flow meter used: feet [Please Attach Results]
25.	screen or open hole is greater than 5 feet, has the well been vertically profiled to assess the potential for contaminant stratification? If the saturated portion of the well screen or open hole is greater than 10 feet, has the well been flow tested to assess the potential for vertical flow to be present within the well? Weather Conditions During Deployment	□ Yes, this well was profiled already. Date when well was profiled: □ No, flow testing has not been conducted in this well □ Yes, flow testing of this well was conducted. Date of testing: □ Type of flow meter used: □ Measurements taken every
25.	screen or open hole is greater than 5 feet, has the well been vertically profiled to assess the potential for contaminant stratification? If the saturated portion of the well screen or open hole is greater than 10 feet, has the well been flow tested to assess the potential for vertical flow to be present within the well? Weather Conditions During Deployment	□ Yes, this well was profiled already. Date when well was profiled: □ No, flow testing has not been conducted in this well □ Yes, flow testing of this well was conducted. Date of testing: □ Type of flow meter used: □ Measurements taken every
25.	screen or open hole is greater than 5 feet, has the well been vertically profiled to assess the potential for contaminant stratification? If the saturated portion of the well screen or open hole is greater than 10 feet, has the well been flow tested to assess the potential for vertical flow to be present within the well? Weather Conditions During Deployment	□ Yes, this well was profiled already. Date when well was profiled: □ No, flow testing has not been conducted in this well □ Yes, flow testing of this well was conducted. Date of testing: □ Type of flow meter used: □ Measurements taken every

1. Site: Former American Cyanmid	
2. Location: Bound Brook, NJ	
3. Well Designation: 01-MW-3	
4. Well Permit Number: N/A	
	<u> (f</u> actus : Cliffor Nature :
	7/Incompany Citizen (1998)
	AND THE STATE OF T
	ATTENTIAN INC. 197
14. Date and Time of Deployment	Date: 4/7/11 Time: 1500
15. Depth to Ground Water	Depth to ground water at time of deployment 3.60 F7
16. Date and Time of Retrieval	Date: 5 (18 (1) Time: 12-33
17. Depth to Ground Water	Depth to ground water at time of deployment 3.34 FT Retyic val
18. Type of Deployment Line Used	Diameter: 1/8" Material: 140# SS Stranded Cable Coated With Tellon
24. If the saturated portion of the well	No, this well is being profiled during this sampling round
screen or open hole is greater than 5	
feet, has the well been vertically profiled to assess the potential for	☐ Yes, this well was profiled already. Date when well was profiled:
contaminant stratification?	
25. If the saturated portion of the well	□ No, flow testing has not been conducted in this well
screen or open hole is greater than 10	
feet, has the well been flow tested to assess the potential for vertical flow to	☐ Yes, flow testing of this well was conducted. Date of testing:
be present within the well?	Type of flow meter used:
	•
26. Weather Conditions During Deployment	Temp. <u>50 F</u> Wind <u>/igh T</u> □ Sunny 【I Overcast □ Raining □ Snowing Temp. <u>65 F</u> Wind □ Sunny □ Overcast 【I Raining □ Snowing
27. Weather Conditions During Retrieval	Temp. <u>65 / F</u> Wind □ Sunny □ Overcast Æ Raining □ Snowing
- 	
	A Dominary (sugario (a gricinality)

1. Site: Former American Cyanmid			
2. Location: Bound Brook, NJ			
Well Designation: FLOD-W1S			
4. Well Permit Number: 25-00067731			
	$m{D}$ to a significant constraint $m{D}$ and $m{D}$		
	Zerana managana		
	Figure 1. April 1. Tribus 1. Lands		
	$W_{ij} = W_{ij} = W$		
	R1:147		
	Through the Committee Through the Committee Co		
	Therefore F.C		
FA Periodic Repairs	EMANY CHARGES TO THE PARTY.		
	Date: 4/7///. Time: 1520		
14. Date and Time of Deployment15. Depth to Ground Water	Date:		
16. Date and Time of Retrieval	Date: 5/15/11 Time: 0945		
17. Depth to Ground Water	Depth to ground water at time of deployment 7.25 FT Ratricos/		
18. Type of Deployment Line Used	Diameter: 1/8" Material: 140# SS Stranded Cable Coated With Teflon		
	The production of the state of t The state of the sta		
	e company in the company of the comp		
	Executive in the control of the cont		
	Mataches in the Born of County of County the Land Audit of the Land County of Addition of County in County		
	Bylanger parameter telephone talender		
24. If the saturated portion of the well	□ No, this well is being profiled during this sampling round		
screen or open hole is greater than 5 feet, has the well been vertically	☐ Yes, this well was profiled already. Date when well was profiled:		
profiled to assess the potential for contaminant stratification?			
25. If the saturated portion of the well screen or open hole is greater than 10	No, flow testing has not been conducted in this well		
feet, has the well been flow tested to	Yes, flow testing of this well was conducted. Date of testing:		
assess the potential for vertical flow to be present within the well?	Type of flow meter used:		
26. Weather Conditions During Deployment	Temp. 50 F Wind 1947 □ Sunny 【GOVercast □ Raining □ Snowing		
27. Weather Conditions During Retrieval	Temp. <u>V4.1∼1</u> Wind <u>U7. Bycc. 2.e</u> □ Sunny Ø Overcast □ Raining □ Snowing		
	Control of the Contro		

1	Site: Former American Cyanmid	
2.	Location: Bound Brook, NJ	
3.	Well Designation: FLOD-W2S	
4.	Well Permit Number: 25-00067731	
		7
	HV47 ALETERY - MAY	<u> Maria Ulticakan</u>
		Presidentia Dicardiscentia
		2 Proposition Continues
14.	Date and Time of Deployment	Date: 4/7/11 Time: 1530
	Depth to Ground Water	Depth to ground water at time of deployment 6.25 FT
	Date and Time of Retrieval	Date: 5/19/11 Time: 12151
	Depth to Ground Water	Depth to ground water at time of deployment 5.03 FT
18.	Type of Deployment Line Used	Diameter: 1/8" Material: 140# SS Stranded Cable Coated With Teflon
		ERMONIC CONTRACTOR OF SECTION OF SECTION SECTI
		TRUTTE ENLETTES MAINTENANT MAINTE
24		
24.	if the saturated portion of the well screen or open hole is greater than 5	□ No, this well is being profiled during this sampling round
	feet, has the well been vertically profiled to assess the potential for	☐ Yes, this well was profiled already. Date when well was profiled:
	contaminant stratification?	
25	If the saturated portion of the well	□ No, flow testing has not been conducted in this well
8.	screen or open hole is greater than 10	
154	feet, has the well been flow tested to assess the potential for vertical flow to	☐ Yes, flow testing of this well was conducted. Date of testing:
	be present within the well?	Measurements taken everyfeet [Please Attach Results]
-		•
26.	Weather Conditions During Deployment	Temp. <u>So'F</u> Wind <u>Slight</u> □Sunny ØOvercast □Raining □Snowing
27.	Weather Conditions During Retrieval	Temp Wind □ Sunny □ Overcast □ Raining □ Snowing
	Transfer de la la la la dela della del	

2. Location: Boun	er American Cyanamid d Brook, NJ
	94-1R
4. Well Permit Number: 25-4	9039
is Tyrkerik	M ANTALAN, CENTRON DALLENIS CALLES SIGNY CONTROL CONTROL
e. : Cable Californe : Periodo	Market in Christ Hours
	Stratification (1) in protein (2)
	ente de le compati desput origina del partir de la la compatit de la compatible de la compa
Ti, de la mayan in est, i di di	olice (propherson) (the contract of the contra
	Bath designation of the second
14. Date and Time of Deployment	Date: 4/7/// Time: 1/00
15. Depth to Ground Water16. Date and Time of Retrieval	Depth to ground water at time of deployment 5.40 = T Date: 4/23/4 Time: 12.45
17. Depth to Ground Water	Depth to ground water at time of deployment 4.38 FT retrieval
18. Type of Deployment Line Used	Diameter: 1/8" Material: 140# SS stranded cable with teflon
	A CONTRACTOR OF THE PROPERTY O
Lain Einkermannich (Albeit	LarythianCharles inCharles inCharles
	Matematic testinos 2025 and matematic set
	LIPPER 18 TUBER OF SECURET BY A SECURE OF SECURE SE
	Alleganis in Souther by data correct into account the first parameters. Approximate the contract of the contr
	Strate
24. If the saturated portion of the well	☐ No, this well is being profiled during this sampling round
screen or open hole is greater than 5	☐ Yes, this well was profiled already. Date when well was profiled:
feet, has the well been vertically profiled to assess the potential for	Note: One PDB is being used to monitor the 8 ft screen interval.
contaminant stratification?	
25. If the saturated portion of the well screen or open hole is greater than 10	□ No, flow testing has not been conducted in this well
feet, has the well been flow tested to	Yes, flow testing of this well was conducted. Date of testing:
assess the potential for vertical flow to be present within the well?	Type of flow meter used: feet [Please Attach Results]
26. Weather Conditions During Deployment	Temp. So F Wind Slight Sunny Novercast Raining Snowing Temp. Warm Wind Cight bruze Sunny Overcast Raining Snowing
27. Weather Conditions During Retrieval	Temp. Warm Wind Light breize Sunny □ Overcast □ Raining □ Snowing
	(Company)
CLASS DEFE	TARKO OKO

1. 2. 3. 4. ½	Location: Bo Well Designation: 34	rmer American Cyanamid ound Brook, NJ -R -33062-4 Finterior: Clear in Companies Co
15. 16. 17.	Title 12 Table 12 Tab	
	Maroria del Michel (2 et l'Eligible) Tano et Pogeroles Secono et Pogeroles Poseros et Pogeroles Poseros et Pogeroles (2 et le 1 et l'en le 1 et	Statistics of the box manufacture of the state of the sta
24.	If the saturated portion of the well screen or open hole is greater than seet, has the well been vertically profiled to assess the potential for contaminant stratification?	□ No, this well is being profiled during this sampling round □ Yes, this well was profiled already. Date when well was profiled:
26.	If the saturated portion of the well screen or open hole is greater than 1 feet, has the well been flow tested to assess the potential for vertical flow be present within the well? Weather Conditions During Deploym	Type of flow meter used:
27. 25.	Weather Conditions During Retrieval	Temp Wind Sunny Overcast Raining Snowing

1. 2.		American Cyanamid
3.	Well Designation: 28-R	
4.	Well Permit Number: NA	
	Engal to Anna and Ann	Mikarding Obstasion Officerenth Ministrações Christal Octobr Ministración Officerent Ministrações Christalisas
	NECTOR: PERSONAL INCOMES OF A SECURITARIAN CONTRACTOR OF A SECURITARIA CONTRACTOR OF A SECURITARIAN CONTRACTOR OF A SECURITARIA CONTRACTOR OF A SECURITARIAN CONTRACTOR OF A SECURITARIA CONTRACTOR OF A SECURITARIAN CONTRACTOR OF A SECURITARIAN CONTRACTOR OF A SECURITARIAN CONTRACTOR OF A SECURITARIA CONTRA	
	Teksi (dali Tash) inga Szenin izi rim dali selenda inga	10.4 (15.4)
		Charles Communication Communic
15. 16. 17.	Date and Time of Deployment Depth to Ground Water Date and Time of Retrieval Depth to Ground Water Type of Deployment Line Used	Date:
	Parking and Manacity, 192055 had From a Pitter Clara	F Controlling States Commission and Commission of Commission of Control Commission of Control Commission of Commission of Commission of Control Contro
21 21	Control of Plants of the State	Controlled of the control of the con
		de de la companya de
24.	If the saturated portion of the well screen or open hole is greater than 5 feet, has the well been vertically profiled to assess the potential for contaminant stratification?	☐ No, this well is being profiled during this sampling round ☐ Yes, this well was profiled already. Date when well was profiled:
25.	If the saturated portion of the well screen or open hole is greater than 10 feet, has the well been flow tested to assess the potential for vertical flow to be present within the well?	□ No, flow testing has not been conducted in this well □ Yes, flow testing of this well was conducted. Date of testing: Type of flow meter used: feet [Please Attach Results]
		e
	Weather Conditions During Deploymen	700
27.	Weather Conditions During Retrieval	Temp. 75 1 Wind Sunny BarOvercast □ Raining □ Snowing
	المراجع المراج	

1.	Site:	Former American Cyanamid				
2.	Location:	Bound Brook, NJ				
3.	Well Designation:	19-R				
4.	Well Permit Number: _	<u>25-31283-9</u>			<u> </u>	
			+			
				2:1		
	itas essitas suge.					
	The Exercise			er ing thirty to		
			_ 1: / > /	1000		
	Date and Time of Deplo	-	Date: 4/7///	Time: 1000	<u></u>	
	Depth to Ground Water		Depth to ground water at time of Date:			
	Date and Time of Retrie Depth to Ground Water	vai	Depth to ground water at time of	Time:		.1
	Type of Deployment Lin	a I lead	Diameter: 1/8"		<u>する テク</u> retrieva # SS stranded cab	
	Type of Deployment Lin		Diameter	iviateriai. 140	W DD Stranded Car	TE MICH CELTON
		erenia de esta esta esta esta esta esta esta est	- Pietalius Arrii	4 62.		
				ie ir carmint "illi		
24.	if the saturated portion of	of the well	☐ No, this well is being profiled	during this sampling r	round	
	screen or open hole is g	reater than 5	☐ Yes, this well was profiled alre			
	feet, has the well been very profiled to assess the po		- 105, this well was profiled and	sady. Date witer wen	i was profiled.	
	contaminant stratification					
25.	If the saturated portion of	of the well	☐ No, flow testing has not been	conducted in this well	II ·	
	screen or open hole is g	s greater than 10	☐ Yes, flow testing of this well w			
	feet, has the well been flow tested to assess the potential for vertical flow to		Type of flow meter used:			
	be present within the well?		Measurements taken ev			ttach Results]
					•	-
	Weather Conditions Dur		Temp. <u>50°F</u> Wind	cight.	_ □Sunny ÆOvercast	-, -
27.	Weather Conditions Dur	ing Retrieval	Temp. <u>みの チ</u> Wind		_ □ Sunny ☑ Overcast	☐ Raining ☐ Snowing
	_ Zhris i					
				7		

1.	Site:	Former American Cyanamid
2.	Location:	Bound Brook, NJ
3.	Well Designation:	MW-2
4.	Well Permit Number:	25-33944-3
i T		
	They and content on Total State Content these States the State Library is States the Content to States the Content to the Content to States the Content to t	Selventer fra 19 (1930) bereichte (1930) LTAB (1930) (1930) bereichte (1930) Selventer (1930) (193
15. 16. 17.	Date and Time of Deploymen Depth to Ground Water Date and Time of Retrieval Depth to Ground Water Type of Deployment Line Use	Depth to ground water at time of deployment <u>8-20 p7</u> Date: <u>1/28/11</u> Time: <u>13/0</u> Depth to ground water at time of deployment <u>6-78 p7</u> retrieval
		A Lair Files - Blassen Trip States and the light and the lair and the
	If the saturated portion of the screen or open hole is greate feet, has the well been vertical profiled to assess the potential contaminant stratification?	r than 5 ally I Yes, this well was profiled already. Date when well was profiled: Note: Two PDBs have been used for sampling the 15 ft screen interval
	screen or open hole is greater than feet, has the well been flow tested to assess the potential for vertical flow be present within the well?	r than 10 sted to Yes, flow testing of this well was conducted. Date of testing: Type of flow meter used: Measurements taken every feet
26.	Weather Conditions During D	eployment Temp. 50 F Wind 1977 □ Sunny KrOvercast □ Raining □ Snowing etrieval Temp. 75 F Wind □ □ □ Sunny □ Overcast □ Raining □ Snowing
27.	Weather Conditions During R	etrieval Temp. 75 F Wind 🗆 Sunny 🗆 Overcast 🗷 Raining 🗀 Snowing
7.	Parkerner Terrener in the second of the seco	en al de la company de la comp

1.	Site: Former	American Cyanamid						
2.	Location: Bound	Brook, NJ						
3.	Well Designation: 42-R							
4.	Well Permit Number: 25-330	66-7						
	Merchine Erwin	Dizakite Z itum/Apat						
	Litakin iffli k aratin i Zuin	Element Carriers, and the second						
		Citta Control (Control Control						
		Barrer - Africa - Description - British - Description - Description - Description - Description - Description						
	Grant Claritan	Caraba Statistical (Control of the Control of the C						
		Date: <u>4/7/11</u> Time:						
	Date and Time of Deployment							
	Depth to Ground Water	Depth to ground water at time of deployment						
	Date and Time of Retrieval	Date: <u>1/30///</u> Time: <u>//20</u>						
	Depth to Ground Water	Depth to ground water at time of deployment /2, 32 retrieval						
16.	Type of Deployment Line Used	Diameter: 1/8" Material: 140# SS stranded cable with teflon						
		a di katalana akkali di katalan katala						
		Bereiten bestallt betalligen viere in der bestallt betallt betallt betallt betallt betallt betallt betallt bet						
		C. Caracina to tertion of experiments of the land because the last						
		THE PLANT AND A STATE OF THE PARTY OF THE PA						
		CANADAS MARIES NA ASAMBA MARIES						
		TOTAL CONTRACTOR OF THE CONTRA						
24.	If the saturated portion of the well	☐ No, this well is being profiled during this sampling round						
	screen or open hole is greater than 5							
	feet, has the well been vertically profiled to assess the potential for	Yes, this well was profiled already. Date when well was profiled:						
	contaminant stratification?							
25.	If the saturated portion of the well	☐ No, flow testing has not been conducted in this well						
	screen or open hole is greater than 10							
	feet, has the well been flow tested to assess the potential for vertical flow to	Yes, flow testing of this well was conducted. Date of testing:						
	be present within the well?	Type of flow meter used:						
		Measurements taken everyfeet [Please Attach Results]						
26.	Weather Conditions During Deployment	Temp. SoF Wind / Light □ Sunny ②Overcast □ Raining □ Snowing						
27.	Weather Conditions During Retrieval	Temp. mild Wind Breezy ⊠Sunny □ Overcast □ Raining □ Snowing						
	-	——————————————————————————————————————						
		FIXTIBELL (Bullet alla destri)						
	النظير الأحالات المرز المالية المراجات المساب							

1.		ormer Am ound Bro		yanamid	<u> </u>					
∠. 3.	•	KK	UK, NJ						····	
J. 4		5-25029 -	9							
	7, 174	161 141 141 141 141 141 141 141 141 141					* D.S.#451			
				i Pluch III.						
										ve itu
								- iustrii - Lustrii		
							inica (Step			
				i i i i i i i i i i i i i i i i i i i						
14.	Date and Time of Deployment		4/7/		Time:					
	Depth to Ground Water	Depth	to ground wa	ter at time o		nt	85			
	Date and Time of Retrieval	_	4/29/		Time:				1	
	Depth to Ground Water Type of Deployment Line Used		to ground wa ter:1			nt <u>/2.5</u>		retrie nded cabl		tefler
10.	Type of Deployment Enterosed	Diamic	(GI,	70	Material.	140)/	DD BCIG	nded Cabi	C WICH	CELION
									rise islani	
							iri in itida i			
						-1444-64				
										
24.	If the saturated portion of the well	□ No.	this well is be	eina profiled	durina this	sampling rou	nd			
	screen or open hole is greater than feet, has the well been vertically	5			_	when well w				
	profiled to assess the potential for				, - ,		p,			
	contaminant stratification?		•							
25.	If the saturated portion of the well	□ No,	flow testing h	as not beer	n conducted	in this well				
	screen or open hole is greater than feet, has the well been flow tested t	o Li Yes	_			ted. Date of	testing:			
	assess the potential for vertical flow be present within the well?	to to	Type of flow				_			
	To prove the man and month		Measureme	nts taken e	very	fe	et	[Please At	tach Results]
26.	Weather Conditions During Deployr	nent Temp.	<u> 50°F</u>	Wind	light		Sunny	₫ Overcast	Raining	☐ Snowing
27.	Weather Conditions During Retrieva	al Temp.	BIF				☑ Sunny	-	_	☐ Snowing
		ي الم			41	44				

1. Site: Forme	er American Cyanamid
	d Brook, NJ
3. Well Designation: 21-R	
4. Well Permit Number: 25-31	1284-7
L. Transition	
i di i 1871 i 1860 i papatangan padamat pambalagan apada	
n Agenta (1944), Carlos Artes (1944), Artes	
	(Arteko (sire)Side Side
54. Oate wet Time of Declayment	Combas: 'ソ/キ <u>/(/</u> Thoma: <u>/선원5</u> _
15. Depth to Ground Water	Depth to ground water at time of deployment 17.90
16. Date and Time of Retrieval	Date: 4/27/// Time: 1525
17. Depth to Ground Water	Depth to ground water at time of deployment 17.63 retrieval
18. Type of Deployment Line Used	Diameter: 1/8" Material: 140#SS stranded cable with teflon
	intia e principal de la companya de
O4 little action of the well	
24. If the saturated portion of the well screen or open hole is greater than 5	□ No, this well is being profiled during this sampling round
feet, has the well been vertically profiled to assess the potential for	☐ Yes, this well was profiled already. Date when well was profiled:
contaminant stratification?	
25. If the saturated portion of the well	☐ No, flow testing has not been conducted in this well
screen or open hole is greater than 10	Ures, flow testing of this well was conducted. Date of testing:
feet, has the well been flow tested to assess the potential for vertical flow to	
be present within the well?	Measurements taken everyfeet [Please Attach Results]
	,
26. Weather Conditions During Deployme	
27. Weather Conditions During Retrieval	Temp. <u>mild</u> Wind <u>LT. brccze</u> □ Sunny □ Overcast ⊠ Raining □ Snowing

1.	Site:	Former American Cyanamid	
2.	Location:	Bound Brook, NJ	
3.	Well Designation:	EEE-R	
4.	Well Permit Number:	25-31282-1	
	Ter-We-	Silvers, They was figures fire and the same fire and the same fire and the same fire and the same fire and the	
		Tring on the control of the control	
			4
		uddig grann draithteacht kurden (f	
		(a) 17.8 1.2346	
		ranga a lifeti sarra Kari dianggalan Deliberahan	
		and the contract of the contra	
	Paris Property	See Double CIL	
4 4	Data and Time of Dealessment	Date: <u>4/7///</u> Time: /2/0	
	Date and Time of Deployment Depth to Ground Water	Date: 7/3/// Time: 12/0 Depth to ground water at time of deployment 13.40	
	Date and Time of Retrieval	Date: 4/36/// Time: 10/0	
	Depth to Ground Water	Depth to ground water at time of depleyment 11.80 FT retrieval	
	Type of Deployment Line Used	Diameter:1/8" Material:140# SS stranded cable with teflo	on

		un egyi Alası i de Cilişile iliştiniye ilişin eliktiyi debiyetini menik ve işinde elikti ile ilişti. Er	
		PATRICULAR CONTROL CON	
		in the control of the	
		44. R. 29. Profest neglecture in Step	
24.	If the saturated portion of the we		
	screen or open hole is greater the feet, has the well been vertically		
	profiled to assess the potential f	• • • • • • • • • • • • • • • • • • • •	
	contaminant stratification?		
25.	If the saturated portion of the we		
	screen or open hole is greater to feet, has the well been flow test	nan 10 Pes, flow testing of this well was conducted. Date of testing:	
	assess the potential for vertical		
	be present within the well?	Measurements taken every feet [Please Attach Results]	
	W	50°E w 60°1 = -	
	Weather Conditions During Dep		-
27.	Weather Conditions During Retr	ieval Temp. <u>60°F</u> Wind	ng
		Conserv	

	E Part of the latest the second		

1. Site:		Former American Cyanamid
2. Locat	ion:	Bound Brook, NJ
3. Well [Designation:	CCC-R
4. Well F	Permit Number:	25-50084
		HOPE CAN PER
		the control (LEATER and Brogner Chair) The property care. The property care
		nder et einer et einer et einer der der Einer Einer Einer Ber im Gerten Gerteil er
		Schedulific Ger
14 Date :	and Time of Deployment	Date: <u>4/7///</u> Time: <u>1215</u>
	to Ground Water	Depth to ground water at time of deployment 14.80
-	and Time of Retrieval	Date:
17. Depth	to Ground Water	Depth to ground water at time of deployment/4/4 F7 retrieval
18. Type o	of Deployment Line Used	· · · · · · · · · · · · · · · · · · ·
		Carrattine 24 December (p) 1975 April 1981
		(Title Brown) in the case of Privile (and by New York) browns
		Distriction is extens at construction of the second state of the s
		e de la companya de l
		, chimai kating, chique germas
04 1545		
	saturated portion of the w n or open hole is greater t	than 5
feet, h	nas the well been vertically ed to assess the potential	y Li Yes, this well was profiled already. Date when well was profiled:
	minant stratification?	TOT .
25 litibo	saturated portion of the w	Oli III No. 4 m. faction has not been conducted by the mile
screer	n or open hole is greater t	than 10
	has the well been flow test is the potential for vertical	
	esent within the well?	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
26. Weath	ner Conditions During Dep	oloyment Temp. 50°F Wind 1967 🗆 Sunny 2(Overcast Raining Snowing
27. Weath	ner Conditions During Ret	·

1. Site:F	ormer American Cyanamid
	ound Brook, NJ
	8-R
4. Well Permit Number: 25	5-33064-1
	ZGSSSS TEMPLAN TEMPLAN THOSESSON HISTORY
a chaithean Philat	
	Prince of the second
	Marker exception and the second secon
	A fermina de la comencia de Mandre de La Carlo de La Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Car La comencia de Carlo
14. Date and Time of Deployment	Date: <u>4/3///</u> Time: <u>1050</u>
15. Depth to Ground Water	Depth to ground water at time of deployment
16. Date and Time of Retrieval	Date: 4/29/11 Time: 14/10
17. Depth to Ground Water	Depth to ground water at time of deployment 12.42 retrieval
18. Type of Deployment Line Used	Diameter: 1/8" Material: 140# SS stranded cable with teflon
. 21 - Brightshir But (21 9 5)	erron A parente, 1/20 egg 50 ill.
	Despring Construction to the last that the construction of the con
	Establica valutera e la colorida de
	MARCHES CONSTITUTE PROPERTY CHARLES
	AN POSS Propagation of the Propa
 If the saturated portion of the well screen or open hole is greater that 	□ No, this well is being profiled during this sampling round
feet, has the well been vertically profiled to assess the potential for	⊔ Yes, this well was profiled already. Date when well was profiled:
contaminant stratification?	
25. If the saturated portion of the well	The flow testing has not been part to the first testing to the first testing to the flow testing the flow testing the flow testing the flow testing te
screen or open hole is greater that	No, flow testing has not been conducted in this well
feet, has the well been flow tested assess the potential for vertical flo	
be present within the well?	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
26. Weather Conditions During Deploy	ment Temp. So°F Wind Slight □ Sunny Ø(Overcast □ Raining □ Snowing val Temp. 68°F Wind □ □ Sunny Ø(Overcast □ Raining □ Snowing
27. Weather Conditions During Retriev	val Temp. <u>GR F</u> Wind □ Sunny W Overcast □ Raining □ Snowing
	2 Tollowing
	ALTERNATION OF THE BEST OF THE

,	mer American Cyanamid	·						
	nd Brook, NJ							
o. Hon Doorghadon.	24942-8							
			Turk nova a substantial angleta gibing ting ting ting ting ting ting ting t					
44 Data and Time of Decisions	5-4/5/w	_						
14. Date and Time of Deployment15. Depth to Ground Water	Date: 4/7/// Depth to ground water at time of	Time: 1255	•					
16. Date and Time of Retrieval	Date: 4/29/11	Time:						
17. Depth to Ground Water	Depth to ground water at time of	•	retrieval					
18. Type of Deployment Line Used	Diameter:1/8"	Material: 140# SS stra	anded cable with teflon					
TO PHILIPPINE PROPERTY PROPERTY.								
	and the second		Jilk Kaliforn					
24. If the saturated portion of the well	□ No, this well is being profiled	during this compline round						
screen or open hole is greater than	15							
feet, has the well been vertically profiled to assess the potential for	E 103, tillo Well Was profiled all	☐ Yes, this well was profiled already. Date when well was profiled:						
contaminant stratification?								
25. If the saturated portion of the well	☐ No, flow testing has not been	conducted in this well						
screen or open hole is greater than feet, has the well been flow tested	to Light Yes, flow testing of this well w	vas conducted. Date of testing:						
assess the potential for vertical flow be present within the well?	, p =							
To proceed within the tree.	Measurements taken ev	reryfeet	[Please Attach Results]					
26. Weather Conditions During Deploys	ment Temp. <u>50 F</u> Wind	1947 Sunny	☑ Overcast ☐ Raining ☐ Snowing					
27. Weather Conditions During Retriev	al Temp. <u>68°F</u> Wind <u>U</u>	גיייע בע יייע בעיי וע בעייי ע	☐ Overcast ☐ Raining ☐ Snowing					
		Carena de la carena						
		ere e						
e e e e e e e e e e e e e e e e e e e								

1.	Site: F	ormer American Cyanamid
2.	Location: B	ound Brook, NJ
3.	11011 D00191101101111	
4.	Well Permit Number:2	5-25027-2
	Tipercykleri 17a Suralamak	Milderste (105-year), Titerberte Offbarblick, Chrighty Offspr Milderte
	i piral secreti analum primire. NGTE: 11005: umanan 19.55 mames a	MCC and the state of the Control of
	Establish (22) Problem (Avrille) Establish Kalleen (1700)	
	Trini (hai francisto) Sentante (h. 1818)	18.6 10.6 - 18.6
- 12	iche Public Militaren de laboration de laboration Daniel Steinet	Ciderians <u>III (1964).</u> Dépuis CASCO, il Minadelle de l'Étade feau Cole. Cidennée LD. Linkin, dépuis CA SCO. Cloures de l'Étanisme Capell Buréau Cha Con NA
15.	Date and Time of Deployment Depth to Ground Water Date and Time of Retrieval	Date: <u> </u>
	Depth to Ground Water	Depth to ground water at time of deployment 3.03 F7 retrieval
18.	Type of Deployment Line Used	Diameter: 1/8" Material: 140# SS stranded cable with teflon
	Carren e Ca	
		1347 (United Strategy 14 19 19 Strategy 14 Line Strategy
		Language to the company of the compa
		Constitution in the second of
		Tari Attica Spale 2015. Yez Miles Attendad
		arient utilita Niles events
24.	If the saturated portion of the well screen or open hole is greater than 5 feet, has the well been vertically profiled to assess the potential for contaminant stratification?	□ No, this well is being profiled during this sampling round □ Yes, this well was profiled already. Date when well was profiled:
25.	If the saturated portion of the well screen or open hole is greater than 10 feet, has the well been flow tested to assess the potential for vertical flow to	□ No, flow testing has not been conducted in this well □ Yes, flow testing of this well was conducted. Date of testing: Type of flow meter used:
	be present within the well?	Measurements taken every feet [Please Attach Results]
26.	Weather Conditions During Deployment	Temp. 50° F Wind 11947 □ Sunny 27 Overcast □ Raining □ Snowing
27.	Weather Conditions During Retrieval	Temp. SOF Wind USLT □ Sunny Item Sunny Item Sunny Item Sunny Item Sunny □ Sunny Item Sunny □ Sunny
		- Harpine V (1985), pero charly,
		Togreb see

1.	Site:	Former American Cyanamid
2.	Location:	Bound Brook, NJ
3.		32-R
4.	Well Permit Number:	2533063-2
		There is the second of the sec
		Constitution of the second of
		istinii (Palai Perinci Palai Palai Perinci Perinci Perinci Palai Perinci Palai Palai Perinci Palai Palai Perinc
		oberný telegrandu innecim. – DAB
	. Az et ez riket tettiku:	
		Marie Indiana (1966) Indiana Maria Indiana Indiana (1966)
		rador de Compete de la comp
		Region Continue (IIII) in Aboth
		Date:
	. Date and Time of Deployment	
	i. Depth to Ground Water i. Date and Time of Retrieval	Depth to ground water at time of deployment <u>\$.45</u> Date: <u>5//3///</u> Time: /4/30
	. Depth to Ground Water	Date: <u>5//3///</u> Time: <u>/930</u> Depth to ground water at time of deployment <u>/0-79 F7</u> retrieval
	. Type of Deployment Line Used	
		maonar 175
44		Afficial Files of Actified the Basis months in National Inner (Copyling Large)
		n de 1919 (1. 1919) en 191 <u>2 de la Calenda (1. 19</u> 00), reducado 1923 (1920) en 1920 (1. 1920) en 1920 (1. 1920) La calenda (1. 1920) en 1920 (1. 1920)
		Entre librated by buttom of the bostness the sent subject of the sent subject
		Marian in the second of the se
		StriPERS Berthook Security an broke
24.	. If the saturated portion of the v	
	screen or open hole is greater feet, has the well been vertical	
	profiled to assess the potential	
	contaminant stratification?	
25.	If the saturated portion of the w	vell
	screen or open hole is greater feet, has the well been flow tes	than 10 Item 10 Yes, flow testing of this well was conducted. Date of testing:
	assess the potential for vertica	
	be present within the well?	Measurements taken everyfeet [Please Attach Results]
26	Weather Conditions During De	ployment Temp. <u>50:F</u> Wind <u>5/igh</u> □ Sunny Marcovercast □ Raining □ Snowing
	Weather Conditions During Re	though Tanan a 188 t Care a
۷1.	Treather Conditions During Re	trieval Temp. <u>U∧√∞.</u> Wind <u>57722</u> ⊠Sunny ☐ Overcast ☐ Raining ☐ Snowing
		maki att Ckingan, (Karaka bing 1118).
		, a contract the second se

1. 2.	Site:	Bound B:	American (rook, NJ	Cyanamid					
3. 4.	Well Designation: Well Permit Number:	0 - R 25-2285	5						
i	Tabal of Stab Stati Sociation Production Capalities of Stabilities, Pole								
5	APPLIE PLOT IN CORPORED IN CORPORATION IN CORPORATI								
14	Desiral acceptance [Desiral acceptance] [Desiral acceptance] [Desiral acceptance] [Desiral acceptance]							. Can	
			There		ilian in Ni				
15.	Date and Time of Deptingme Depth to Ground Water		Depth to grou	nd water at tim	e of deployment	5.20	 . ,		
17.	Date and Time of Retrieval Depth to Ground Water			nd water at tim	Time:/ ne of deployment	4.12	retric		
10.	Type of Deployment Line U	sea	Diameter:	178"	Material:	140# SS	stranded o	cable wi	th teflon
2.12	Type VELES (Inc.)								
	Cinegosal 2785								
	Russy - (Russ Access								
	in alexantica e a acesa.								
			en i		a nees			e e	
	If the saturated portion of the screen or open hole is great feet, has the well been verti- profiled to assess the poten contaminant stratification?	ter than 5 cally			led during this sa already. Date w	mpling round hen well was profile	ed:		
	If the saturated portion of the screen or open hole is great feet, has the well been flow assess the potential for verti be present within the well?	er than 10 tested to	☐ No, flow testing has not been conducted in this well ☐ Yes, flow testing of this well was conducted. Date of testing:						_
26.	Weather Conditions During	Deployment			S/16/2			ttach Results	-
	Weather Conditions During I		Temp	Wind	Slight	🗆 Sunr	oy Overcast Overcast	□ Raining Caining	☐ Snowing ☐ Snowing
	restante production								

Date:		5/18/2011		_ Monitoring Well Field Sheet							
Client:	Wyeth										
Well ID:	Well:	Flod \	Flod W1S		ion:	A.H.P.	A.H.P. Bound Brook				
Well Dept	h <u>:</u>	17.40	ft.	Ca	se Size:		2.0	inch	_		
DTWTOC	:	7.25	ft.	vo	I/ft:		0.16	gal/ft			
Water Ler	ngth:	10.15	ft.	Са	se Vol:		1.62	gal	_		
Vol x 3 =		4.86	gal	Vo	ol x 5 =		8.10	gal			
				i					•		
**** Pt	urge Mo	nitoring *	***	Purge Method: PERISTALTIC							
	рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time		
		uohms/Con	degree C	mg/L	apparent	ntu	ft	gal			
Pre-Purge	5.06	69100.0	11.3	4.91	CLEAR	7.60	7.25	0.0	9:50		
A.	3.28	2600.0	10.5	2.73	CLEAR	5.00		2.0	9:55 10:05		
B. C.	3.00	3200.0	9.9	2.88	CLEAR	<0.1		4.0	10.05		
D.											
Post Purge	2.97	3720.0	9.9	2.14	CLEAR	<0.1	7.52	6.0	10:05		
Pre-Sample	"	"	"	"	OLLAIT	"	"	"	"		
Sample								8.00	10:10		
Post Sample	2.91	3840.0	9.8	2.05	CLEAR	<0.1	7.54	12.00	10:20		
Purge En	d:	10:05				Pump:	SOL	INIST			
Purge Start: 9:50		9:50	_			Bailer:	N	I/ A			
Purge Ler	ngth:	15.0	_		E	Bailer Seal:	N	I/A			
Volume Purged:		6.00	gal	ı	P	urge Rate:	0.40	GPM			
W	eather:	Overcast, War	rm Domo								
			•								
Sa	mpling Tech	nnicians:	НМ	ı				-			
Co	mments:										

Date:		5/18/2011	Monitoring Well Field She						
Client:	Wyeth								
Well ID:	Well:	01-MV	Location: A.H.P			Bound I	Brook		
Well Dept	<u>h:</u>	17.50	ft.	Ca	se Size:		4.0	inch	
DTWTOC	·	3.37	ft.	vol	/ft:		0.65	gal/ft	•
Water Ler	ngth:	14.13	ft.	Ca	se Vol:		9.18	gal	_
Vol x 3 =		27.54	gal	Vo	x 5 =		45.90	gal	<u>.</u>
**** Pt	urge Mo	nitoring ***	r*	Pu	rge Method	l:	PERISTAL	TIC.	
	рН	S. Cond	Temp degree C	D.O mg/L	Color	Turbitity	DTW ft	Vol gal	Time
Pre-Purge	1.81	508.0	13.2	3.13	CLEAR	131.00	3.37	0.0	12:24
A. B.	1.72 1.63	599.0 723.0	12.8 12.8	9.16 2.62	CLEAR CLEAR	42.60 16.70		9.0 18.0	12:34 12:43
C.	1.00	720.0	12.0	2.02	OLL/III	10.70		10.0	12.40
D.									
	1 00	740.0	100	0.50	OLEAD	7.00	5.00	00.0	10.50
Post Purge Pre-Sample	1.63	749.0	12.2	3.58	CLEAR	7.80	5.32	28.0	12:53
Sample								33.00	12:58
Post Sample	1.62	756.0	12.3	2.15	CLEAR	0.00	5.31	38.00	13:03
Purge En	d:	12:53	_			Pump:	SOL	INIST	
Purge Sta	ı <u>rt:</u>	12:24	_			Bailer:	N/A		•
Purge Ler	ngth:	29.0	=		E	Bailer Seal:	N	N/A	
Volume Purged:		28.00	gal	ı	P	Purge Rate:	0.97	GPM	•
We	eather:	Cloudy, Occasion	nal Rain, 67 [Degrees F					
Sa	mpling Tech	inicians:	SH	i				-	
Co	mments:	Strong Odor							

No Lock

Date:		<i>5/18/2011</i>			Monit	toring	Well F	Field S	heet
Client:	Wyeth								
Well ID:	Well:	01-MV	V-2	Locat	ion:	A.H.P. I	Bound I	Brook	
Well Dept	<u>h:</u>	18.10	ft.	Ca	se Size:		4.0	inch	1
DTWTOC	:	5.88	ft.	vo	I/ft:		0.65	gal/ft	
Water Ler	ngth:	12.22	ft.	Case Vol:			7.94	gal	
Vol x 3 =		23.82	gal	Vol x 5 =			39.70	gal	
**** Pt	urge Mo	onitoring ***	**	Pu	rge Method	l:	PERISTAL	TIC	
	рН	S. Cond uohms/Con	Temp degree C	D.O mg/L	Color	Turbitity	DTW ft	Vol gal	Time
Dro Durgo	1.42	51900.0	12.2	2.05	Lt Brwn	117.00	5.88	0.0	12:28
Pre-Purge A.	1.42	52000.0	11.1	1.48	Lt Brwn	68.90	5.00	9.0	12:39
В.	1.37	52000.0	11.2	0.92	Lt Brwn	52.30		19.0	12:52
C.									
D.									
Post Purge	1.41	47800.0	11.8	2.30	CLEAR	14.20	6.01	28.0	13:03
Pre-Sample	"	"	"	"	OLLAIT	"	"	"	"
Sample								30.00	13:05
Post Sample	1.40	48600.0	11.2	2.15	CLEAR	17.70	5.99	33.50	13:10
Purge En	d <u>:</u>	13:03	_			Pump:	SOL	INIST	ī
Purge Sta	ırt:	12:28	<u>_</u>			Bailer:	N	I/A	
Purge Ler	ngth:	35.0	_		E	Bailer Seal:	N	I/A	
Volume P	urged:	28.00	gal		P	Purge Rate:	0.80	GPM	
We	eather:	Lt Rain, Overcas	t, Warm						
		,	НМ						
Sampling Technicians: Comments: Strong Odor to P FB [11:40] via bla		Purge and S		/-2. Need Tu	ubing		-		

Date:	Date:	5/18/2011	Monitoring Well Field Sheet						
Client:	Wyeth								
Well ID:	Well:	01-MV	V-1	Locat	ion:	A.H.P. Bound Brook			
Well Dept	h <u>:</u>	15.40	ft.	Ca	ıse Size:		4.0	inch	
DTWTOC	:	5.33	ft.	ft. vol/ft:			0.65	gal/ft	
Water Ler	ngth:	10.07	ft.	Ca	se Vol:		6.55	gal	1
Vol x 3 =		19.65	gal	Vo	ol x 5 =		32.75	gal	
**** Pl	urge Mo	nitoring ***	t*	Pı	ırge Method	<u> </u>	PERISTAL	TIC	•
									Time
	рН	S. Cond uohms/Con	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time
	2.01	04000.0	10.0	F 01	Dule Dunes	. 500	F 00	0.0	10.45
Pre-Purge A.	3.01 3.05	24900.0 82400.0	12.2 11.1	5.31 1.52	Drk Brwn Lt Brwn	>500 375.00	5.33	7.0	10:45 10:54
В.	2.94	80000.0	11.0	0.91	Lt Brwn	171.00		14.0	11:02
C.									
D.									
Doot Dure	2.94	82700.0	11.1	0.81	Lt Brwn	118.00	6.33	21.0	11:11
Post Purge Pre-Sample	"	02700.0	"	"	Lt DIWII	"	"	"	"
Sample								24.00	11:15
Post Sample	2.88	81000.0	11.1	<0.01	Lt Brwn	35.00	6.34	40.00	11:35
Purge En	d:	11:11	_			Pump:	SOL	INIST	
Purge Sta	ı <u>rt:</u>	10:45	<u> </u>			Bailer:	N	/ A	
Purge Length:		26.0	<u> </u>		E	Bailer Seal:	N	I/A	
Volume P	urged:	21.00	gal		P	ourge Rate:	0.81	GPM	•
	eather: mpling Tech	overcast, warm,	damp <i>HM</i>						
	F9 . 501								

Comments: Perform MS/MSD on 01-MW-1

Date:		5/18/2011			Monit	toring	Well F	Field S	heet
Client:	Wyeth								
Well ID:	Well:	PZ-12	-6	Locat	ion:	A.H.P. E	Bound E	3rook	
Well Dept	<u>h:</u>	15.20	ft.	Ca	se Size:		2.0	inch	
DTWTOC:		4.07	ft.	vol/ft:			0.16	gal/ft	
Water Ler	ngth:	11.13	ft.	Са	se Vol:		1.78	gal	•
Vol x 3 =		5.34	gal	Vol x 5 =			8.90	gal	
**** Pu	ırge Mo	nitoring ***	*	Pu	rge Method	d:	PERISTAL	.TIC	<u>.</u>
	pН	S. Cond uohms/Con	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time
	2.00	45000.0	111	0.00	CLEAD	47.10	4.07	0.0	10.00
Pre-Purge A.	3.36 3.77	45600.0 31000.0	14.1 14.9	9.99 3.15	CLEAR CLEAR	47.10 13.50	4.07 5.54	0.0 2.0	13:38 13:41
В.	4.20	30700.0	15.0	2.23	CLEAR	0.00	5.41	4.0	13:47
C.									
D.									
	T	1 2//22 2			I a: = : =	T T			
Post Purge	4.27	31100.0	15.1	2.20	CLEAR	0.00	5.42	6.0	13:51
Pre-Sample Sample								7.38	13:54
Post Sample	4.29	30900.0	15.0	1.66	CLEAR	0.00	5.40	8.76	13:57
Purge End	d:	13:51	_			Pump:	SOL	INIST	
Purge Sta	rt:	13:38	•			Bailer:	N	I/A	•
Purge Ler	ngth:	13.0	_		E	Bailer Seal:	N	I/A	-
Volume P	urged:	6.00	gal		P	Purge Rate:	0.46	GPM	
We	eather:	CLOUDY, 70'S							
Sa	Sampling Technicians:		SH					•	
Co	mments:								

Date:		5/18/2011			MOHI	coring	weii r	ieia 5	neet
Client:	Wyeth								
Well ID:	Well:	PZ-12	2-5	Locat	ion:	A.H.P. Bound Brook			
Well Dept	<u>h:</u>	14.90	ft.	Ca	ise Size:		2.0	inch	•
DTWTOC:		3.10	ft.	vol/ft:			0.16	gal/ft	_
Water Len	gth:	11.80	ft.	Ca	ase Vol:		1.89	gal	
Vol x 3 =		5.67	gal	Vo	ol x 5 =		9.45	gal	-
**** Pl	urae Moi	nitoring ***	+*	Pu	ırge Methoo	d:	PERISTAL	TIC	•
	рН	S. Cond	Temp	D.O mg/L	Color	Turbitity	DTW	Vol gal	Time
	2.24								1100
Pre-Purge	6.01 6.11	38100.0 37700.0	13.3 14.8	1.76 1.44	CLEAR CLEAR	75.10 39.50	3.10 6.01	0.0 2.0	14:32 14:37
<u>А.</u> В.	6.14	36400.0	15.3	1.86	CLEAR	53.50	6.02	4.0	14:42
C.			1010						
D.									
Post Purge Pre-Sample	6.13	35700.0	15.5	3.97	CLEAR	49.20	6.28	6.0	14:47
Sample								8.40	14:53
Post Sample	6.08	35700.0	15.5	2.13	CLEAR	39.90	6.40	9.20	14:55
Purge End	d:	14:47	_			Pump:	SOL	INIST	
Purge Sta	rt:	14:32	_			Bailer:	N	I/ A	•
Purge Length: 15.0		15.0	_		E	Bailer Seal:	N	I/A	<u>.</u>
Volume P	urged:	6.00	gal		P	urge Rate:	0.40	GPM	•
	eather: mpling Tech	HEAVY RAIN, 67	7 DEGREES	F					

Date:		5/18/2011			Monit	toring	Well F	ield S	heet
Client:	Wyeth								
Well ID:	Well:	PZ-12	2-4	Locat	ion:	A.H.P. L	Bound E	3rook	-
Well Dept	<u>h:</u>	16.80	ft.	Ca	ise Size:		2.0	inch	_
DTWTOC	·	4.58	ft.	vo	l/ft:		0.16	gal/ft	-
Water Ler	ngth:	12.22	ft.	Case Vol:			1.96	gal	_
Vol x 3 =		5.88	gal	Vol x 5 =			9.80	gal	-
**** P	urge Mo	nitoring **	**	Pι	ırge Method	l <u>:</u>	PERISTAL	TIC	-
	рН	S. Cond	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time
Pre-Purge	2.94	127.0	13.3	1.76	CLOUDY	-5.00	4.58	0.0	11:03
A.	2.60	164.0	12.7	1.44	CLOUDY		5.20	2.0	11:08
В.	2.49	185.0	12.6	1.86	CLOUDY	530.00	5.20	4.0	11:14
C.									
D.									
Post Purge	2.42	202.0	12.5	1.36	CLOUDY	538.00	5.21	6.0	11:19
Pre-Sample	"	"	"	"	020021	"	"	"	"
Sample								7.90	11:24
Post Sample	2.40	210.0	12.6	1.05	CLOUDY	434.00	5.20	8.66	11:26
Purge En	d:	11:19	_			Pump:	SOL	INIST	
Purge Sta	ırt:	11:03	_			Bailer:	N	/ A	•
Purge Ler	ngth:	16.0	_		E	Bailer Seal:	N	I/A	-
Volume P	urged:	6.00	gal		P	urge Rate:	0.38	GPM	_
We	eather:	CLOUDY,63 DE	GREES F						
Sa	mpling Tech	nicians:	SH					-	
Co	mments:	NO LOCK							

HEAVY FILM / SCREEN NOTED / STRONG ODOR

Date:		5/18/2011			Monitoring Well Field Sheet						
Client:	Wyeth										
Well ID:	Well:	PZ-12	2-3	Locat	ion:	A.H.P. I	Bound I	Brook	<u>.</u>		
Well Dept	h:	15.00	ft.	Ca	se Size:		2.0	inch	•		
DTWTOC:		3.62	ft.	vo	I/ft:		0.16	gal/ft	•		
Water Ler	gth:	11.38	ft.	Ca	se Vol:		1.82	gal			
Vol x 3 = 5.46		5.46	gal	Vo	l x 5 =		9.10	gal	<u>.</u>		
**** Pu	ırge Mo	nitoring **	**	Pu	rge Method	d:	PERISTAL	.TIC	•		
	рН	S. Cond uohms/Con	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time		
Pre-Purge	3.72	17600.0	13.0	2.82	BRWN	228.00	3.62	0.0	13:50		
A.	4.45	13800.0	13.0	2.22	CLEAR	8.50	0.02	2.5	13:55		
В.	4.84	12700.0	13.3	2.27	CLEAR	4.70		5.0	14:00		
C.											
D.								<u> </u>			
Doot Durgo	4.89	12600.0	13.2	2.67	CLEAR	1.30	3.94	7.5	14:05		
Post Purge Pre-Sample	"	"	"	"	OLLAIT	"	"	".5	"		
Sample								10.00	14:10		
Post Sample	4.51	12600.0	13.2	2.51	CLEAR	1.10	3.88	12.50	14:20		
Purge End	d:	14:05	_			Pump:	SOL	INIST	_		
Purge Sta	rt:	13:50				Bailer:	N	I/A	_		
Purge Length: 15.0		_		E	Bailer Seal:	ı	N/A				
Volume P	urged:	7.50	gal		F	Purge Rate:	0.50	GPM			
Wa	eather:										
	mpling Tech	nicians:	НМ					_			

5/18/2011

Comments: FIELD DUP ON PZ-12-3

Date:		5/18/2011		Monitoring Well Field Shee						
Client:	Wyeth									
Well ID:	Well:	PZ-12	2-2	Locat	ion:	A.H.P. I	Bound E	Brook	•	
Well Dept	h:	14.90	ft.	Ca	ıse Size:		2.0	inch	•	
DTWTOC:		4.96	ft.	vo	l/ft:	0.16 gal/ft		gal/ft		
Water Len	gth:	9.94	ft.	Case Vol:			1.59	gal		
Vol x 3 =		4.77	gal	Vol x 5 = 7.95		gal	-			
**** Pi	urae Ma	nitoring **	+*	Pi	ırge Method	1.	PERISTAL	TIC	- -	
, .									-	
	pН	S. Cond uohms/Con	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time	
Pre-Purge	5.40	17000.0	12.8	3.90	CLOUDY	316.00	4.96	0.0	9:34	
A.	5.51	13300.0	13.0	4.74	CLEAR	71.80	5.31	1.6	9:39	
В.	5.40	14400.0	13.0	4.08	CLEAR	41.00	5.30	3.2	9:43	
C.					 					
D.					_					
Post Purge	5.23	18300.0	13.0	3.40	CLEAR	12.00	5.30	5.0	9:48	
Pre-Sample	"	"	"	"		"	II.	"	"	
Sample								6.80	9:53	
Post Sample	5.15	22300.0	12.9	3.01	CLEAR	6.80	5.33	7.88	9:56	
Purge End	٠.	9:48				Pump:	SOL	INIST		
			_			•				
Purge Sta	rt:	9:34	_			Bailer:	N	/ A	-	
Purge Length:		14.0	_		E	Bailer Seal:	N	I/A	•	
Volume P	urged:	5.00	gal		P	Purge Rate:	0.36	GPM	_	
	eather: mpling Tech	CLOUDY, DRIZZ	ZLE, 60'S <i>SH</i>							

Comments: NO LOCK

Date:	5/18/2011				Monit	toring	Well F	Field S	heet
Client:	Wyeth								
Well ID:	Well:	PZ-12	?-1	Locat	ion:	A.H.P. I	Bound I	Brook	
Well Dept	<u>h:</u>	14.70	ft.	Ca	ase Size:		2.0	inch	
DTWTOC:		4.13	ft.	vol/ft:			0.16	gal/ft	
Water Ler	ngth:	10.57	ft.	Case Vol:			1.69	gal	
Vol x 3 =		5.07	gal	Vol x 5 =			8.45	gal	
**** D.	waa Ma		*						
Pl	irge ivic	nitoring ***		Pι	irge Method	d:	PERISTAL	TIC	•
	pН	S. Cond uohms/Con	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time
Pre-Purge	3.36	56200.0	15.2	3.09	CLOUDY	′ 568.00	4.13	0.0	8:18
A.	3.43	25100.0	15.3	2.99	CLEAR	27.10	4.83	1.8	8:21
В.	3.32	25600.0	15.2	2.63	CLEAR	0.00	4.87	3.6	8:24
C.									
D.									
Doot Duran	3.28	25500.0	15.3	2.38	CLEAR	1 0 00	4.89	5.2	8:29
Post Purge Pre-Sample	3.20	23300.0	"	"	ULLAN	0.00	"	"	"
Sample								6.14	8:31
Post Sample	3.30	26200.0	15.2	2.46	CLEAR	0.00	4.94	8.49	8:36
Purge End	d:	8:29	_			Pump:	SOL	INIST	•
Purge Sta	rt:	8:18	_			Bailer:	N	I/A	
Purge Ler	Purge Length: 11.0		_		I	Bailer Seal:	N	I/A	
Volume P	urged:	5.20	gal		F	Purge Rate:	0.47	GPM	-
	eather:	CLOUDY, 60'S	ÇU						
Sa	Sampling Technicians:		SH					•	

Comments: NO LOCK

Date:	4/30/2011	Monitoring Well Field Sheet
Client:	Wveth	

Well ID: Well:	MW-	22R	Location:	A.H.P. BOUND	BROOK
Well Depth:	22.95	ft.	Case Size:	2.0	inch
DTWTOC:	8.28	ft.	vol/ft:	0.16	gal/ft
Water Length:	14.67	ft.	Case Vol:	2.35	gal
Vol x 3 =	7.05	gal	Vol x 5 =	11.75	gal

Purge Method: SUBMERSIBLE

	рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time
		uohms/Con	degree C	mg/L	apparent	ntu	ft	gal	
Pre-Purge	8.61	782.0	11.9	1.93	BROWN	>500	8.28	0.0	10:02
A.	8.69	728.0	11.8	1.27	BROWN	>500		2.4	10:12
В.	8.75	721.0	11.9	0.36	BROWN	>500		5.0	10:24
C.	8.77	710.0	11.8	0.40	BROWN	386.00		7.5	10:35
D.	8.70	716.0	11.6	0.51	BROWN	234.00		9.9	10:45
Post Purge	8.77	718.0	11.8	0.38	BROWN	176.00	8.53	11.3	10:51
Pre-Sample	8.76	718.0	11.8	2.17	BROWN	59.30	8.32		11:00
Sample								11.30	11:05
Post Sample	8.75	716.0	11.8	2.09	BROWN	129.00	8.41	11.30	11:10
Pre-Sample Sample	8.76	718.0	11.8	2.17	BROWN	59.30	8.32	11.30	0

Purge End <u>:</u>	10:51		Pump:			
Purge Star <u>t:</u>	10:02		Bailer:	Dispo)	
Purge Length:	49.0	min	Bailer Seal:	N/A		
Volume Purged:	11.3	gal	Purge Rate:	0.23	GPM	

Weather:	CLEAD	COOI	BREEZE
weather:	ULEAR.	COOL.	BREEZE

Sampling Technicians: ______

Comments: r.7-5-11

Date:	4/30/2011	

Wyeth Client:

£./	ACC	JTE	ST	
Mo	nitoring	Well	Field	Sheet

Well ID: Well:	MW-	-1A	Location:	A.H.P. BOUND	BROOK
Well Depth:	14.42	ft.	Case Size:	4.0	inch
DTWTOC:	12.44	ft.	vol/ft:	0.65	gal/ft
Water Length:	1.98	ft.	Case Vol:	1.29	gal
Vol x 3 =	3.87	gal	Vol x 5 =	6.45	gal

**** Purge Monitoring ****

Purge Method: SUBMERSIBLE

	рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time
		uohms/Con	degree C	mg/L	apparent	ntu	ft	gal	
Pre-Purge	8.92	2680.0	12.4	1.03	BLACK	299.00	12.44	0.0	8:35
A.	9.07	2670.0	12.6	1.42	BLACK	182.00		1.2	8:41
B.	9.21	2700.0	12.6	1.72	BLACK	69.80		2.4	8:42
C.	9.33	2660.0	12.6	0.71	CLEAR	28.80		3.6	8:53
D.	9.29	2660.0	12.5	0.83	CLEAR	19.70		4.8	8:59
Post Purge	9.24	2650.0	12.4	0.69	CLEAR	16.20	12.70	6.0	9:05
Pre-Sample	9.28	2640.0	12.4	0.41	CLEAR	12.70	12.46		9:15
Sample								6.00	9:20
Post Sample	9.23	2610.0	12.4	0.37	CLEAR	15.60	12.62	6.00	9:25
		<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>

Purge End:	9:05		Pump:	SOLINST	
Purge Star <u>t:</u>	8:35		Bailer:		ъро
Purge Length:	30.0	min	Bailer Seal:	N/A	
Volume Purged:	6.0	gal	Purge Rate:	0.20	GPM

Weather:	CLEAR, COOL, BREEZE

Sampling Technicians: НМ

Comments: WELL HAS NOT BEEN SAMPLED FOR YEARS. EVACUATED APP 5 VOLUMES

EACCUTEST
Monitoring Well Field Sheet

Date:	4/30/2011	

Client: Wyeth

Well ID: Well:		42R		Location:	A.H.P. BOUNDBROOK		
Well Depti	h:	24.20	ft.	Case Size:	4.0	inch	
DTWTOC:		12.72	ft.	vol/ft:	0.65	gal/ft	
Water Len	gth:	11.48	ft.	Case Vol:	7.46	gal	
Vol x 3 =		22.38	gal	Vol x 5 =	37.30	gal	

**** Purge Monitoring ****

Purge Method: PERISTALTIC

	рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time
		uohms/Con	degree C	mg/L	apparent	ntu	ft	gal	
Pre-Purge	8.35	882.0	13.8	1.38	CLEAR	46.10	12.72	0.0	11:30
A.	8.70	884.0	13.8	0.65	CLEAR	57.20		8.0	11:40
B.	8.89	885.0	13.8	0.48	CLEAR	47.80		16.0	11:50
C.									
D.									
Post Purge	8.92	890.0	13.8	0.52	CLEAR	48.10	17.32	24.0	12:00
Pre-Sample	"	"	"	"	"	"	=	"	"
Sample	•				CLEAR			28.00	12:05
Post Sample	8.85	894.0	13.7	0.75	CLEAR	39.60	17.35	30.00	12:10
		<u> </u>	<u> </u>			<u> </u>			<u> </u>

Purge End <u>:</u>	12:00		Pump:	SOLINST	
Purge Star <u>t:</u>	11:30		Bailer:	N	/ A
Purge Length:	30.0	min	Bailer Seal:	N	I/A
Volume Purged:	24.0	gal	Purge Rate:	0.80	GPM

Weather:	CLEAR, MILD BREEZE
Sampling Technician	ns: HM

EACCUTEST
Monitoring Well Field Sheet

Date:	4/30/2011	

Client: Wyeth

Well ID: Well:	EEE-	-R	Location:	A.H.P. BOUNDI	BROOK
Well Depth:	25.10	ft.	Case Size:	4.0	inch
DTWTOC:	11.80	ft.	vol/ft:	0.65	gal/ft
Water Length:	13.30	ft.	Case Vol:	8.65	gal
Vol x 3 =	25.95	gal	Vol x 5 =	43.25	gal

**** Purge Monitoring ****

Purge Method: PERISTALTIC

	pН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time
		uohms/Con	degree C	mg/L	apparent	ntu	ft	gal	
Pre-Purge	6.66	636.0	12.5	2.24	CLEAR	46.80	11.80	0.0	10:35
A.	6.66	641.0	11.5	1.56	CLEAR	44.85		10.0	10:53
В.	6.61	637.0	11.6	1.60	CLEAR	34.80		20.0	11:11
C.									
D.									
Post Purge	6.65	635.0	11.3	1.46	CLEAR	6.45	12.20	30.0	11:29
Pre-Sample	"	"	"	"	"	"	"	"	"
Sample	_				CLEAR			33.60	11:35
Post Sample	6.66	643.0	11.0	1.71	CLEAR	7.36	12.20	40.88	11:48

Purge End <u>:</u>	11:29		Pump:	SOL	INST
Purge Star <u>t:</u>	10:35		Bailer:	N	/ A
Purge Length:	54.0	min	Bailer Seal:	N	I/A
Volume Purged:	30.0	gal	Purge Rate:	0.56	GPM

M/ 11	OLINININ/	0001	0010
Weather:	SUNNY,	COOL,	60'5

Sampling Technicians: RS

Comments: MS, MSD

Date:	4/30/2011	

Wyeth Client:

ACCUTEST	
Monitoring Well Field	Sheet

Well ID: Well:		CCC	C-R	Location:	A.H.P. BOUNDBROOK		
Well Dept	h:	26.50	ft.	Case Size:	4.0	inch	
DTWTOC:		14.10	ft.	vol/ft:	0.65	gal/ft	
Water Ler	ıgth:	12.40	ft.	Case Vol:	8.06	gal	
Vol x 3 =		24.18	gal	Vol x 5 =	40.30	gal	

**** Purge Monitoring ****

Purge Method: PERISTALTIC

	рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time
		uohms/Con	degree C	mg/L	apparent	ntu	ft	gal	
Pre-Purge	6.37	658.0	11.8	2.68	CLEAR	34.20	14.10	0.0	8:54
A.	6.33	898.0	11.4	1.98	CLEAR	34.50		10.0	9:12
В.	6.32	910.0	11.4	2.07	CLEAR	30.30		20.0	9:21
C.									
D.									
Post Purge	6.34	911.0	11.4	2.23	CLEAR	33.60	14.73	30.0	9:30
Pre-Sample	"	"	"	"	"	"	"	"	"
Sample					CLEAR			34.03	9:35
Post Sample	6.32	853.0	11.2	2.10	CLEAR	36.20	14.54	45.65	9:49

Purge End <u>:</u>	9:30		Pump:	SOL	SOLINST	
Purge Star <u>t:</u>	8:54		Bailer:	N	I/ A	
Purge Length:	36.0	min	Bailer Seal:	N/A		
Volume Purged:	30.0	gal	Purge Rate:	0.83	GPM	

Weather:	SUNNY, COLD, 50'S

Sampling Technicians: RS

FIELD DUP ON CCC-R (EXCEPT VO'S) Comments:

Date:	4/29/2011
Client:	Wyeth

Well ID: Well:		38R		Location:	A.H.P. Bound Brook		
Well Dep	th:	25.60	ft.	Case Size:	4.0	inch	
DTWTOC	:	12.46	ft.	vol/ft:	0.65	gal/ft	
Water Le	ngth:	13.14	ft.	Case Vol:	8.54	gal	
Vol x 3 =		25.62	gal	Vol x 5 =	42.71	gal	

Purge Method: PERISTALTIC

	рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time
		uohms/Con	degree C	mg/L	apparent	ntu	ft	gal	
Pre-Purge	8.41	880.0	13.9	2.08	ORANGE	640.00	12.46	0.0	15:52
A.	8.95	788.0	13.4	1.52	CLOUDY	220.00	14.05	9.0	16:04
В.	9.39	560.0	13.4	2.52	CLEAR	70.30	14.04	18.0	16:16
C.									
D.									
Post Purge	9.43	470.0	13.5	2.11	CLEAR	18.30	14.08	27.0	16:28
Pre-Sample	"	"	"	=		"	"	"	"
Sample								28.00	16:30
Post Sample	9.55	448.0	13.4	1.80	CLEAR	13.60	14.09	29.00	16:32

Volume Purged:	27.0	gal	Purge Rate:	0.75	GPM
Purge Length:	36.0	min	Bailer Seal:	N	I/A
Purge Star <u>t:</u>	15:52		Bailer:	N	/ A
Purge End <u>:</u>	16:28		Pump:	SOLNI	ST 410

Weather:	CLOLIDA	66 DEGREES	c
weather:	GLUUDY.	00 DEGREES	┌

Sampling Technicians: STAN HUTT

Date:	4/29/2011
Client:	Wyeth

Well ID: Well:		AAA GRP11		Location:	A.H.P. Bound Brook		
Well Dep	th:	16.80	ft.	Case Size:	1.5	inch	
DTWTOC	:	4.12	ft.	vol/ft:	0.09	gal/ft	
Water Le	ngth:	12.68	ft.	Case Vol:	1.14	gal	
Vol x 3 =		3.42	gal	Vol x 5 =	5.71	gal	

Purge Method: PERISTALTIC

Ī	рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time
		uohms/Con	degree C	mg/L	apparent	ntu	ft	gal	
Pre-Purge	9.09	453.0	13.2	1.47	CLOUDY	904.00	4.12	0.0	10:52
A.	10.58	795.0	12.3	1.71	CLEAR	118.00	4.78	1.1	10:55
В.	10.73	811.0	11.9	1.40	CLEAR	32.90	4.65	2.2	10:58
C.									
D.									
Post Purge	10.72	815.0	12.1	1.79	CLEAR	24.10	4.62	3.8	11:01
Pre-Sample	"	"	"	=		"	"	"	"
Sample								4.40	11:03
Post Sample	10.76	819.0	12.0	1.17	CLEAR	16.00	4.61	5.40	11:05

Purge End <u>:</u>	11:01		Pump:	SOLNI	ST 410
Purge Star <u>t:</u>	10:52		Bailer:	N	/ A
Purge Length:	9 MIN		Bailer Seal:	N	I/A
Volume Purged:	3.80	gal	Purge Rate:	0.42	GPM

3 F
ò

Sampling Technicians: STAN HUTT

Date:	4/29/2011	
	147	_

Client:	Wyeth	

DTWTOC: 3.02 ft. vol/ft: 0.09 Water Length: 16.78 ft. Case Vol: 1.51	Well ID: Well: 111 GRP11		Location:	A.H.P. Bound Brook			
Water Length: 16.78 ft. Case Vol: 1.51	II Depth:	19.80 ft.	Case Size:	1.5 inch			
	WTOC:	3.02 ft.	vol/ft:	0.09 gal/ft			
Vol x 3 = 4.53 gal Vol x 5 = 7.55	ter Length:	16.78 ft.	Case Vol:	1.51 gal			
<u> </u>	x 3 =	4.53 gal	Vol x 5 =	7.55 gal			

Purge Method: PERISTALTIC

Ī	рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time
		uohms/Con	degree C	mg/L	apparent	ntu	ft	gal	
Pre-Purge	9.39	601.0	12.3	1.02	MUDDY	-5.00	3.02	0.0	12:00
A.	9.47	601.0	11.5	1.62	CLEAR	54.80	3.22	1.5	12:07
B.	9.52	605.0	11.0	2.25	CLEAR	36.20	3.27	3.0	12:13
C.									
D.									
Post Purge	9.55	605.0	10.9	2.26	CLEAR	21.40	3.25	4.5	12:19
Pre-Sample	"	"	"	"		"	"	"	"
Sample								5.50	12:21
Post Sample	9.57	605.0	10.8	1.44	CLEAR	20.80	3.25	6.50	12:23
•	9.57	605.0	10.8	1.44	CLEAR	20.80	3.25	6.50	

Purge End <u>:</u>	12:19		Pump:	SOLNI	ST 410
Purge Star <u>t:</u>	12:00		Bailer:	N	/ A
Purge Length:	19 MIN		Bailer Seal:	N	I/A
Volume Purged:	4.50	gal	Purge Rate:	0.24	GPM

Weather:		DEGREES F	

Sampling Technicians: STAN HUTT

Date:	4/29/2011
	147

Client: Wyeth

Well ID: Well:	Well ID: Well: KKK GRP11		Location:	A.H.P. Bound L	Brook
Well Depth:	28.30	ft.	Case Size:	1.5	inch
DTWTOC:	12.85	ft.	vol/ft:	0.09	gal/ft
Water Length:	15.45	ft.	Case Vol:	1.39	gal
Vol x 3 =	4.17	gal	Vol x 5 =	6.95	gal

**** Purge Monitoring ****

Purge Method: PERISTALTIC

рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time
	uohms/Con	degree C	mg/L	apparent	ntu	ft	gal	
6.48	219.0	13.1	1.59	CLOUDY	537.00	12.85	0.0	13:40
6.11	194.0	12.1	1.31	CLEAR	50.80	13.08	1.4	13:45
6.13	188.0	11.8	1.29	CLEAR	23.90	13.07	2.8	13:50
6.30	186.0	11.5	2.24	CLEAR	22.80	13.07	4.2	13:56
"	"	"	"		"	"	"	"
							5.20	14:00
6.37	185.0	11.6	1.90	CLEAR	13.60	13.05	6.20	14:04
	6.48 6.11 6.13 6.30	6.48 219.0 6.11 194.0 6.13 188.0 6.30 186.0	6.48 219.0 13.1 6.11 194.0 12.1 6.13 188.0 11.8 6.30 186.0 11.5	6.48 219.0 13.1 1.59 6.11 194.0 12.1 1.31 6.13 188.0 11.8 1.29 6.30 186.0 11.5 2.24	6.48 219.0 13.1 1.59 CLOUDY 6.11 194.0 12.1 1.31 CLEAR 6.13 188.0 11.8 1.29 CLEAR 6.30 186.0 11.5 2.24 CLEAR " " " " CLEAR	6.48 219.0 13.1 1.59 CLOUDY 537.00 6.11 194.0 12.1 1.31 CLEAR 50.80 6.13 188.0 11.8 1.29 CLEAR 23.90 6.30 186.0 11.5 2.24 CLEAR 22.80 " " " " " " " " "	uohms/Con degree C mg/L apparent ntu ft 6.48 219.0 13.1 1.59 CLOUDY 537.00 12.85 6.11 194.0 12.1 1.31 CLEAR 50.80 13.08 6.13 188.0 11.8 1.29 CLEAR 23.90 13.07 6.30 186.0 11.5 2.24 CLEAR 22.80 13.07 " " " " " "	6.48 219.0 13.1 1.59 CLOUDY 537.00 12.85 0.0 6.11 194.0 12.1 1.31 CLEAR 50.80 13.08 1.4 6.13 188.0 11.8 1.29 CLEAR 23.90 13.07 2.8 6.30 186.0 11.5 2.24 CLEAR 22.80 13.07 4.2 " " " " " " 5.20

Purge End <u>:</u>	13:56		Pump:	SOLNI	ST 410
Purge Star <u>t:</u>	13:40		Bailer:	N	/ A
Purge Length:	16 MIN		Bailer Seal:	N	//A
Volume Purged:	4.20	gal	Purge Rate:	0.26	GPM

M/ + l	DADTIV	CLINININ	70 DECDEECE
Weather:	PARILY	SUIVINY.	70 DEGREES F

Sampling Technicians: STAN HUTT

r.7-5-11

Date:	4/29/2011				Monit	oring	Well F	Field S	heet
Client:	Wyeth								
Well ID:	Well:	16MW-2	GRP11	Locat	ion:	A.H.P. I	Bound I	Brook	
Well Depti	h:	16.10	ft.	Ca	ase Size:		4.0	inch	ī
DTWTOC:		4.25	ft.	vo	ol/ft:		0.65	gal/ft	
Water Len	gth:	11.85	ft.	Ca	ase Vol:		7.70	gal	ı
Vol x 3 =		23.10	gal	Vo	ol x 5 =		38.50	gal	ī
**** Pu	ırge Mo	nitoring	/ ****	Pu	urge Method	<u>:</u>	PERISTAL	.TIC	
	рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time
		uohms/Con	degree C	mg/L	apparent	ntu	ft	gal	
Pre-Purge	10.38	814.0	14.0	1.95	ORANGE	351.00	4.25	0.0	9:00
A.	10.63	795.0	13.4	3.23	CLOUDY	_	4.35	8.0	9:13
В.	10.59	799.0	13.8	2.95	CLEAR	97.00	4.32	16.0	9:28
C.									
D.									
	40.70	T = 0.0 0 1		0.74	1 01 5 4 5		1.01	0.4.0	0.45
Post Purge	10.72	799.0	14.0	3.74	CLEAR	67.00	4.31	24.0	9:45
Pre-Sample								25.00	9:48
Sample Post Sample	10.67	793.0	13.1	3.73	CLEAR	38.80	4.31	26.00	9:51
1 ost oumple	, 10.07	700.0	10.1	0.70	1 OLL/ III	00.00	1.01	20.00	0.01
Purge End	d:	9:45				Pump:	SOL	INIST	
Purge Sta		0.00				Bailer:	N	/ A	1
Purge Sta	ru.	9:00				Daller:	IN	/ A	i
Purge Len	gth:	45 MIN			E	Bailer Seal:	N	I/A	ī
Volume Pr	urged:	24.00	gal		Р	urge Rate:	0.53	GPM	1
We	eather:	SUNNY. BE	REEZY. 64	DEGREF!	S F				

Sampling Technicians: STAN HUTT

Date:		4/28/2011			Monit	toring	Well F	ield S	heet
Client:	Wyeth								
Well ID:	Well:	34R	?	Locat	ion:	A.H.P. L	Bound E	3rook	
Well Dept	<u>h:</u>	26.30	ft.	Ca	se Size:		4.0	inch	
DTWTOC		14.70	ft.	vo	I/ft:		0.65	gal/ft	
Water Ler	ngth:	11.60	ft.	Ca	se Vol:		7.54	gal	_
Vol x 3 =		22.62	gal	Vo	ol x 5 =		37.70	gal	•
**** Pt	urge Moi	nitoring ***	*	Pu	ırge Method	d:	PERISTAL	.TIC	
	рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time
		uohms/Con	degree C	mg/L	apparent	ntu	ft	gal	
Pre-Purge	7.85	806.0	14.1	2.30	BLACK	195.00	19.70	0.0	16:20
<u>А.</u> В.	7.31 7.19	768.0 777.0	14.7 15.0	2.79 2.62	CLEAR CLEAR	47.20 28.00	17.50 17.57	10.0 20.0	16:43 17:09
C.									
D.									
Post Purge	7.10	776.0	15.0	2.65	CLEAR	17.20	17.55	25.0	17:23
Pre-Sample	"	"	"	"		"	"	"	"
Sample Post Sample	7.04	772.0	14.0	2.62	CLEAR	18.30	17.55	25.40 27.40	17:24 17:29
Purge En	d <u>:</u>	17:23	_			Pump:	SOL	INST	•
Purge Sta	ı <u>rt:</u>	16:20	_			Bailer:	N	I/A	•
Purge Lei	ngth:	63.0	<u> </u>		E	Bailer Seal:	N	I/A	
Volume P	urged:	25.00	gal		F	Purge Rate:	0.40	GPM	
W	eather:	CLOUDY, COOL,	70'S						
					СП				
	mpling Tech	melans.	RS		SH			•	
Co	mments:								

Date:		4/28/2011			Monit	toring Well Field She					
Client:	Wyeth										
Well ID: Well: Well Depth:		28R	}	Location:		A.H.P. Bound Brook					
		17.80		Case Size:			4.0	inch	•		
DTWTOC		3.59	ft.	vo	I/ft:	0.65 9.24		gal/ft	_		
Water Ler	ngth:	14.21	ft.	Ca	se Vol:			gal	_		
Vol x 3 =		27.72 ga		gal Vol x 5 =		46.20		gal	•		
**** Pt	urge Moi	nitoring ***	*	Pu	rge Method	d:	PERISTAL	.TIC	•		
	рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time		
		uohms/Con	degree C	mg/L	apparent	ntu	ft	gal			
Pre-Purge A.	7.01 6.26	1180.0 1070.0	14.4	2.03	BRWN CLEAR	636.00 104.00	3.59	0.0	9:19 9:33		
B. C.	6.09	970.0	14.3	1.98	CLEAR	58.10		20.0	9:47		
D.											
Post Purge Pre-Sample	6.07	952.0	14.8	2.18	CLEAR	32.30	4.49	30.0	10:01		
Sample								30.71	10:02		
Post Sample	6.00	967.0	14.6	2.57	CLEAR	42.60	4.40	32.84	10:05		
Purge En	d:	10:01	_			Pump:	SOL	INST			
Purge Start: 9:19		_			Bailer:	N	I/A	-			
Purge Length: 42.0		42.0	_	į.		Bailer Seal:	N/A		•		
Volume Purged:		30.00	gal	Purge Rate:		0.71	GPM	•			
107	a a tha a w	OLOUDY HOT	ZE DEODEEG	`F							
	eather:	CLOUDY, HOT, 7) F							
	mpling Tech	molalis.	RS					4			
Co	mments:										

Date:	4/28/2011			Monitoring Well Field Sheet							
Client: Wyeth											
Well ID:	Well:	19R		Location:		A.H.P. Bound Brook			•		
Well Depth:		11.60		Case Size:			4.0	inch	_		
DTWTOC	DTWTOC: 3.55		ft.	vo	l/ft:		0.65	gal/ft	•		
Water Ler	ngth:	8.05	ft.	Ca	se Vol:	5.23		gal	-		
Vol x 3 =		15.69 gal		Vol x 5 =			26.15	gal	•		
**** Pt	urge Mo	nitoring ***	+	Purge Method: PERISTALTIC							
	рН	S. Cond	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time		
	6.75	210.0	12.0	1.50	DDWN	196.00	2.55	0.0	10:45		
Pre-Purge A.	6.75 6.72	318.0 261.0	13.8 14.6	1.53 1.34	BRWN Lt. Brwn	186.00 172.00	3.55	0.0 5.0	10:45 10:55		
В.	6.68	251.0	14.5	2.44	Lt. Brwn	281.00		10.0	11:03		
C.											
D.											
	6.40	248.0	1 1 1 1	2.22	I + Drawn	256.00	10.05	16.0	11.11		
Post Purge Pre-Sample	6.49	248.0	14.4	3.32	Lt. Brwn	356.00	10.95	16.0	11:14		
Sample								16.55	11:15		
Post Sample	6.49	249.0	14.3	3.53	Lt. Brwn	350.00	11.15	19.30	11:20		
Purge En	d:	11:14	_			Pump:	SOL	INST			
Purge Start: 10:45		=			Bailer:	N	/ A	-			
Purge Length:		29.0	_	Bailer Seal:		N/A		-			
Volume Purged:		16.00	gal		F	urge Rate:	0.55	GPM	•		
We	eather:	CLOUDY, HOT, 8	0'S								
Sa	mpling Tech	inicians:	RS								
Co	mments:										

Date:		4/28/2011	_ Monitoring wen rield Sheet						
Client:	Wyeth								
Well ID: Well: Well Depth:		II: <i>MW-2</i>		Locat		A.H.P. L	Bound Brook		
		21.10		Ca	se Size:		4.0	inch	_
DTWTOC	:	21.10 ft 6.84 ft		vo	l/ft:		0.65	gal/ft	-
Water Ler		14.26	ft.		se Vol:	9.27		gal	
Vol x 3 =		27.81	gal	Vo	ol x 5 =		46.35	gal	-
**** Pl	urge Mo	nitoring ***	ŧ	Pu	ırge Method	d:	PERISTAL	TIC	•
	рН	S. Cond	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time
Pre-Purge	8.14	3090.0	13.1	0.94	GREEN	109.00	6.84	0.0	13:36
A.	8.60	3140.0	13.3	1.64	GREEN	204.00		10.0	14:05
В.	8.64	3230.0	13.6	2.30	GREEN	230.00		20.0	14:55
C.									
D.									
Post Purge	8.71	3210.0	14.4	2.68	GREEN	146.00	16.16	30.0	15:20
Pre-Sample	1	"	"	=		"	"	"	"
Sample									15:22
Post Sample	e 8.68	3220.0	13.7	3.71	GREEN	124.00	15.69	30.00	15:25
Purge En	d <u>:</u>	15:20	_		Pump:			INST	
Purge Start: 13:36		_			Bailer:	N	/ A	•	
Purge Length:		104.0	_		E	Bailer Seal:	N	I/A	<u>.</u>
Volume Purged:		30.00	gal		F	Purge Rate:	0.29	GPM	_
We	eather:	RAIN, HOT, 75 D	EGRESS F						
Sa	mpling Tech	nicians:	RS			_		_	
						-			

Comments: ONLY UPPER ZONE VOC SAMPLE. WELL HAD A LOT OF GARGAGE INSIDE.

Date:			_ Monitoring Well Field Shee						
Client:	Wyeth								
Well ID:	Well:	RCRA L	D-10	Location:		A.H.P. I			
Well Depth:		72.40	ft.	Case Size:			6.0	inch	
DTWTOC:		35.06	ft.	vo	I/ft:		1.47	gal/ft	
Water Ler	gth:	37.34	ft.	Ca	se Vol:		54.89	gal	
Vol x 3 =		164.67	gal	Vo	l x 5 =		274.45	gal	
**** Pu	ırge Mo	nitoring ***	*	Pu	rge Method	d:	BLADDER		
	рН	S. Cond	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time
	F 00	470.0	15.0	F 00	OLEAD	10.00	05.00	0.0	0.05
Pre-Purge	5.28 6.41	478.0 477.0	15.9 15.0	5.03 4.07	CLEAR CLEAR	16.60 0.00	35.06 40.08	0.0 55.0	8:05 9:00
<u>А.</u> В.	6.70	461.0	15.0	3.57	CLEAR	0.00	40.50	110.0	9:55
C.	00		10.0	0.0.	0==/	0.00			0.00
D.									
Post Purge	6.15	463.0	15.6	3.63	CLEAR	13.10	39.70	165.0	10:50
Pre-Sample	"	"	- "			"			
Sample Post Sample	6.40	469.0	15.8	3.69	CLEAR	10.50	39.85	170.00 175.00	10:55 11:00
r ost Sample	, 0. 1 0	400.0	10.0	0.00	OLL/III	10.00	00.00	170.00	11.00
Purge End: 10:50		_			Pump:	DEDIC	CATED	ı	
Purge Start: 8:05		_			Bailer:	N	//A		
Purge Length: 165.0		_		ı	Bailer Seal:	N	I/A		
Volume Purged: 165.00		gal		F	Purge Rate:	1.00	GPM		
We	eather:	CLOUDY, 70 DEC	GREES F						
Sampling Technicians:		SH					•		

MS, MSD

Date:	4/28/2011				Moni	toring	Well F	Field S	heet
Client:	Wyeth								
Well ID:	Well:	RCRA	D-9	Location:		A.H.P.	•		
Well Depth:		87.70	ft.	Case Size:			6.0	inch	•
DTWTOC:		23.59	ft.	vo	I/ft:		1.47	gal/ft	•
Water Len	gth:	64.11	ft.	Ca	se Vol:		94.24	gal	
Vol x 3 =		282.72	gal	Vo	ol x 5 =		471.20 gal		_
	-								•
**** Pu	ırge Mo	nitoring ***	*	Pu	ırge Metho	d:	BLADDER		
	рН	S. Cond uohms/Con	Temp degree C	D.O mg/L	Color	Turbitity ntu	DTW ft	Vol gal	Time
	F 07	550.0	14.0	0.50	OLEAD	1.00	00.50	0.0	0.05
Pre-Purge A.	5.87 8.61	550.0 566.0	14.6 16.0	6.59 1.35	CLEAR CLEAR	1.20 5.60	23.59 40.09	0.0 94.0	8:25 9:59
В.	8.31	577.0	15.5	2.62	CLEAR	2.10	40.40	188.0	11:33
C.				-					
D.									
	0.00	500.0	1 440	0.44	LOLEAD	1 0 00	10.05	000.0	10.00
Post Purge	8.30	583.0	14.8	3.44	CLEAR	2.00	40.35	283.0	13:08
Pre-Sample Sample								288.00	13:13
Post Sample	8.34	580.0	14.9	3.85	CLEAR	1.40	40.46	293.00	13:18
·		•							
Purge End: 13:08		_			Pump:	DEDIC	CATED		
Purge Start: 8:25		_			Bailer:	N	I/A		
Purge Length: 283.0		_		I	Bailer Seal:	N	N/A	•	
Volume Purged: 283.00		gal		F	Purge Rate:	1.00	GPM		
We	eather:	CLOUDY, 70 DE	GREES F						
Sampling Technicians:		SH			-		•		

Date:		4/28/2011			Moni [.]	toring	Well F	Field S	heet
Client:	Wyeth								
Well ID:	Well:	RCRA	D-8	Location:		A.H.P.	Bound	Brook	
Well Dept	h:	62.90	ft.	Case Size:			6.0	inch	
DTWTOC: 29.41		29.41	ft.	vo	l/ft:		1.47	gal/ft	
Water Length: 33.49		33.49	ft.	Ca	se Vol:		49.23	gal	
Vol x 3 = 147.69		gal	Vo	l x 5 =		246.15	gal		
**** Pu	ırge Mo	nitoring *	Pu	rge Metho	d:	BLADDER			
	рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time
		uohms/Con	degree C	mg/L	apparent	ntu	ft	gal	
Pre-Purge	8.07	380.0	15.5	2.77	CLEAR	11.00	29.41	0.0	8:50
A.	7.69	521.0	15.6	1.92	CLEAR	7.80	30.62	50.0	9:40
В.	6.86	526.0	16.0	2.14	CLEAR	1.90	30.30	100.0	10:30
C.									
D.									
_	7.00	507.0	100	0.01	LOLEAD	1 4 00	00.54	450.0	11.00
Post Purge	7.68	537.0	16.0	2.01	CLEAR	4.20	30.51	150.0	11:20
Pre-Sample Sample								155.00	11:25
Post Sample	7.30	510.0	16.0	2.09	CLEAR	2.50	30.60	160.00	11:30
Purge End	d:	11:20	_			Pump:	DEDIC	CATED	
Purge Sta	rt:	8:50	_			Bailer:	N	/ A	
Purge Length: 150.0			-		E	Bailer Seal:	N	I/A	
Volume P	urged:	150.00	gal		F	Purge Rate:	1.00	GPM	
We	Weather: CLOUDY, 70 I			:					
Sa	Sampling Technicians:		SH			- .		•	

Date:	4/28/2011				Monit	toring '	Well F	ield S	heet
Client:	Wyeth								
Well ID:	Well:	RCRA	D-1	Locat	ion:	A.H.P. E	A.H.P. Bound Brook		
Well Dept	h:	71.70	ft.	Case Size:			6.0	inch	ı
DTWTOC:		35.96	ft.	vol/ft:			1.47	gal/ft	•
Water Ler	ngth:	35.74	ft.	Case Vol:			52.54	gal	
Vol x 3 =		157.62	gal	Vol x 5 =			262.70	gal	•
**** Purge Monitoring **** Purge Method: BLADDER									
	рН	S. Cond	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time
	F 00	500.0	15.0	7.00	CLEAD	11.00	25.00	0.0	10.00
Pre-Purge A.	5.60 7.12	562.0 653.0	15.8 14.8	7.20 2.84	CLEAR CLEAR	11.20 11.10	35.96 36.32	0.0 60.0	12:20 13:20
В.	6.46	663.0	14.7	2.88	CLEAR	1.60	36.38	120.0	14:20
C.									
D.									
Doot Duran	6.07	677.0	15.5	2.60	CLEAR	3.60	26.40	190.0	15:20
Post Purge Pre-Sample	"	077.0	"	2.00	CLEAN	3.60	36.40	180.0	15.20
Sample								185.00	15:25
Post Sample	6.14	676.0	15.4	2.46	CLEAR	1.10	36.28	190.00	15:30
Purge End	d:	15:20				Pump:	DEDIC	CATED	
Purge Sta	rt:	12:20	_			Bailer:	N	/ A	
Purge Ler	ngth:	180.0	_		E	Bailer Seal:	N	/ A	ı
Volume P	urged:	180.00	gal		P	urge Rate:	1.00	GPM	
We	eather:	HEAVY THUNDE	BSTORM 6	7 DEGREE	SF				
	mpling Tech		SH	. DEGITEE					
	mments:					-			

Date:	4/27/2011		Notes:	Pı	ırge Pressure	:110 PSI				
Sampler:	Harold M	eissner		Sam	ple Pressure	:75 PSI				
Flute ID:	TT			Max Pressure: 125 PSI						
_				Discard Initial (Gallon @ San	nple Collection				
Port 1		Port 2		Port 3		Port 3				
Purge Vol Req_	3.0	Purge Vol Req_	3.0	Purge Vol Req	3.4	Purge Vol Req				
Purge 1		Purge 1		Purge 1		Purge 4				
Time Start: _ Time End: _ Volume: _ Color:	7:45 7:40 1.50 Clear	Time Start: Time End: Volume: Color:	7:45 7:40 1.50 Clear	Time Start: Time End: Volume: Color:	7:45 7:40 1.50 Clear	Time Start: Time End: Volume: Color:	11:30 11:32 0.25 Clear			
Purge 2		Purge 2		Purge 2		Purge 5				
Time Start: _ Time End: _ Volume: _ Color:	7:55 8:00 1.50 Clear	Time Start: _ Time End: _ Volume: _ Color:	7:55 8:00 1.50 Clear	Time Start: Time End: Volume: Color:	8:00 8:02 0.25 Clear	Time Start: Time End: Volume: Color:	13:55 13:57 0.50 Clear			
Purge 3		Purge 3		Purge 3		Purge 6				
Time Start: _ Time End: _ Volume: _ Color:		Time Start: _ Time End: _ Volume: _ Color:	10:25 10:30 1.00 Clear	Time Start: Time End: Volume: _ Color:	11:05 11:08 0.75 Clear	Time Start: Time End: Volume: Color:	14:40 14:42 0.25 Clear			
Total Volume	3.00	Total Volume	3.00	Continued		Total Volume	3.50			
Sample		Sample		Sample		Sample				
Time Start: _	10:35	Time Start:_	10:45	Time Start:	10:39	Time Start:	16:05			
Comments:	S-Clear, Warm Field Blank [11									

Date: _	4/27/2011		Notes:	Purg	ge Pressure:	110 PSI			
Sampler:	Harold M	leissner		Sampl	le Pressure:	75 PSI			
Flute ID:	ww			Max Pressure: 125 PSI					
Discard Initial Gallon @ Sample Collection									
Port 1		Port 2		Port 3		Port 4			
Purge Vol Req_	4.2	Purge Vol Req_	4.3	Purge Vol Req	4.2	Purge Vol Req			
Purge 1		Purge 1		Purge 1		Purge 1			
Time Start: _ Time End: _ Volume: _ Color:	9:45 9:53 2.25 Clear	Time Start: _ Time End: _ Volume: _ Color:	9:45 9:53 2.00 <i>Clear</i>	Time Start: Time End: Volume: Color: It	9:45 9:53 2.25 BrTint	Time Start: Time End: Volume: Color:			
Purge 2		Purge 2		Purge 2		Purge 2			
Time Start: _ Time End: _ Volume: _ Color:	10:10 10:18 2.25 Clear	Time Start: Time End: Volume: Color:	10:10 10:18 2.00 Clear	Time End:	10:10 10:18 2.25 Clear	Time Start: Time End: Volume: Color:			
Purge 3		Purge 3		Purge 3		Purge 3			
Time Start: _ Time End: _ Volume: _ Color:		Time Start: Time End: Volume: Color:	10:25 10:30 1.00 Clear	Time Start: Time End: Volume: Color:		Time Start: Time End: Volume: Color:			
Total Volume	4.50	Total Volume	5.00	Total Volume	4.50	Total Volume			
Sample		Sample		Sample		Sample			
Time Start: _	10:35	Time Start:_	10:45	Time Start:	10:39	Time Start:			
Weather: 5 Comments:	S-Clear, Warn	light breeze							

Date:	4/27/2011	Notes:	Pı	urge Pressure	:110 PSI					
Sampler:	Harold Meissner		Sample Pressure: 75 PSI							
Flute ID:	XX		Max Pressure: 125 PSI							
			Discard Initial	Gallon @ San	nple Collection					
Port 1	Port 2		Port 3	4/26/2011	Port 4					
Purge Vol Req	Purge Vol Req_		Purge Vol Req_	N/A	Purge Vol Req					
Purge 1	Purge 1		Purge 1	4/26/2011	Purge 1					
Time Start: Time End: Volume: Color:	Time Start: Time End: Volume: Color:		Time Start: Time End: Volume: Color:	8:18 2.25	Time Start: Time End: Volume: Color:					
Purge 2	Purge 2		Purge 2	4/26/2011	Purge 2					
Time Start: Time End: Volume: Color:	Time Start: Time End: Volume: Color:		Time Start: _ Time End: _ Volume: _ Color:	16:20 16:28 2.25 Clear	Time Start: Time End: Volume: Color:					
Purge 3	Purge 3		Purge 3		Purge 3					
Time Start: Time End: Volume: Color:	Time Start: Time End: Volume: Color:		Time Start: _ Time End: _ Volume: _ Color:		Time Start: Time End: Volume: Color:					
Total Volume	Total Volume		Total Volume	4.50	Total Volume					
Sample	Sample		Sample	4/27/2011	Sample					
Time Start:	Time Start:		Time Start: _	8:45	Time Start:					
Comments:	Clear, Mild, Uight breeze X P3 purged on 4-26, and sa	ampled in Mol	rning of 4-27-11							

Date:		4/27/2011		Monit	toring	Well F	[∓] ield S	heet	
Client:	Wyeth								
Well ID:	Well:	TFP94	I1R	Locat	ion:	A.H.P. I	Bound I	Brook	4
Well Dept	<u>h:</u>	19.10	ft.	Case Size:			4.0	inch	_
DTWTOC:		4.38	ft.	vol/ft:		0.65 gal/ft		gal/ft	-
Water Len	gth:	14.72	ft.	Ca	ase Vol:		9.57	gal	•
Vol x 3 = 28.71		gal	Vo	ol x 5 =		47.85	gal		
**** Di	urae Moi	nitoring ***	*	D.	was Mathas	1.	CENTRIFI	ICAL	•
rı	ii ge ivioi				irge Method		CENTRIFL	JGAL	
	рН	S. Cond uohms/Con	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time
Pre-Purge	7.51	940.0	17.3	3.42	Lt. Brown	35.12	4.38	0.0	12:50
A.	8.04	980.0	16.3	4.04	CLEAR	18.30		11.0	13:04
В.	8.50	1010.0	14.5	4.47	CLEAR	10.90		22.0	13:07
C.								<u> </u>	
D.									
Post Purge	9.25	1020.0	14.6	4.25	CLEAR	10.40	4.65	32.0	13:30
Pre-Sample	"	"	"	"	"	"	ıı	"	"
Sample								36.00	13:35
Post Sample	9.19	1030.0	14.2	3.98	CLEAR	11.90	4.69	40.00	13:40
Purge End	d:	13:30				Pump:	DEDI	CATED	
Purge Sta	rt:	12:50	_			Bailer:	N	I/A	•
Purge Length: 40.0		40.0	min		E	Bailer Seal:	١	N/A	_
Volume P	urged:	32.0	gal		F	Purge Rate:	0.80	GPM	•
	eather:	clear, warm, Lt. E	Breeze <i>HM</i>						
Sampling Technicians:			ПІУІ						

Date:	4/27/2011	Monitoring Well Field Shee							
Client:	Wyeth								
Well ID:	Well:	RCRA	D-15	Locat	ion:	A.H.P.	Bound E	Brook	
Well Dept	h:	83.90	ft.	Case Size:			6.0	inch	
DTWTOC:		39.28	ft.	vo	I/ft:		1.47	gal/ft	
Water Len	gth:	44.62	ft.	Case Vol:		65.59 gal		gal	
Vol x 3 =		196.77	gal	Vol x 5 =			327.95	gal	
**** PL	urae Mo	nitoring ***	**	Pu	rge Method	d:	BLADDER		
	рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time
	рп	uohms/Con	degree C	mg/L	apparent	ntu	ft	gal	111116
Pre-Purge	6.13	570.0	15.7	6.18	CLEAR	16.70	39.28	0.0	12:05
A.	6.09	584.0	15.0	4.15	CLEAR	7.90	39.80	65.0	13:10
В.	6.65	572.0	15.1	4.35	CLEAR	12.30	39.91	130.0	14:15
C. D.									
Post Purge	6.50	557.0	15.3	4.18	CLEAR	4.00	39.65	197.0	15:22
Pre-Sample	"	"	"	"	"	"	"	"	"
Sample Post Sample	6.33	553.0	15.4	4.09	CLEAR	1.70	39.80	202.00	15:27 15:32
Purge End	d:	15:22	_			Pump:	DEDIC	CATED	•
Purge Sta	rt:	12:05	_			Bailer:	N	I/A	•
Purge Ler	gth:	197.0	min		ı	Bailer Seal:	N	I/A	
Volume P	urged:	197.0	gal		F	Purge Rate:	1.00	GPM	
	eather: mpling Tech	CLOUDY, 74 DE	GREES F					_	

Comments: FIELD DUP

Date:		4/27/2011	Monitoring Well Field Sheet						
Client:	Wyeth								
Well ID:	Well:	RCRA I	D-14	Locat	ion:	A.H.P.	Bound E	Brook	ı
Well Dept	h:	80.50	ft.	Case Size:			6.0	inch	
DTWTOC:		39.96	ft.	ft. vol/ft:			1.47	gal/ft	
Water Ler	ngth:	40.54	ft.	Ca	se Vol:		59.59	gal	
Vol x 3 = 178.77		gal	Vo	ol x 5 =		297.95	gal		
**** Pı	ırae Mo	nitoring ***	*	Di	ırge Method	4.	BLADDER		
, ,					_			I	Time
	pН	S. Cond uohms/Con	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time
Pre-Purge A.	6.21 7.03	537.0 578.0	15.4 15.6	6.85	CLEAR CLEAR	10.80	39.96 40.28	0.0	12:55 13:55
B. C. D.	6.69	537.0	15.2	3.96	CLEAR	24.40	40.45	120.0	14:55
Post Purge Pre-Sample	6.53	534.0	15.0	3.80	CLEAR "	5.50	40.41	180.0	15:55
Sample Post Sample	6.57	527.0	14.7	3.99	CLEAR	4.30	40.40	185.00 190.00	16:00 16:05
Purge End	d:	15:55				Pump:	DEDIC	CATED	
Purge Sta	rt:	12:55	_			Bailer:	N	/ A	•
Purge Ler	ngth:	180.0	min		ı	Bailer Seal:	N	I/A	•
Volume P	urged:	180.0	gal		F	Purge Rate:	1.00	GPM	
	eather: mpling Tech	CLOUDY, HUMIC	O 73 DEGREE SH	ES F					
	Sampling recimicians.					-		-	

Date:	4/27/2011				Monit	toring	Well F	Field S	heet
Client:	Wyeth								
Well ID:	Well:	RCRA I	D-13	Location:		A.H.P. I	Bound E	Brook	1
Well Dept	<u>h:</u>	85.90	ft.	Case Size:			6.0	inch	
DTWTOC:		43.60	ft.	vol/ft:			1.47	gal/ft	1
Water Ler	Water Length: 42.30		ft.	Ca	se Vol:		62.18	gal	
Vol x 3 =		186.54	gal	al Vol x 5 =			310.90	gal	ı
									i
**** Pu	ırge Mo	nitoring ***	*	Pu	rge Method	d:	BLADDER		1
	рН	S. Cond uohms/Con	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time
Due Desert	6.04	624.0	16.2	2.00	CLEAD	15.00	42.60	0.0	7:45
Pre-Purge A.	6.94 6.99	634.0 611.0	14.9	2.90 2.21	CLEAR CLEAR	15.00 3.40	43.60 47.89	0.0 62.0	8:47
В.	7.46	591.0	15.7	2.22	CLEAR	12.20	47.95	124.0	9:49
C.									
D.									
	T	T	1		T	T		I	
Post Purge	8.14	593.0	16.1	2.02	CLEAR "	1.60	47.84	187.0	10:52
Pre-Sample Sample								191.00	10:56
Post Sample	7.62	588.0	15.2	1.87	CLEAR	0.20	47.78	196.00	11:01
	1111		1 191=		1	1 0:=0		100100	
Purge End	d:	10:52	_			Pump:	DEDIC	CATED	1
Purge Sta	rt:	7:45	_			Bailer:	N	/ A	ī
Purge Length: 187.0		min		E	Bailer Seal:	N	I/A		
Volume P	urged:	187.0	gal		F	Purge Rate:	1.00	GPM	
We	eather:	PARTLY CLOUD	Y, 67 DEGRE	EES F					
Sampling Technicians:		SH					•		

Date:	4/27/2011			Monit	toring	Well F	Field S	heet	
Client:	Wyeth			•					
Well ID:	Well:	RCRA L	D-12	Location:		A.H.P. E	Bound E	Brook	
Well Dept	h:	77.10	ft.	Case Size:			6.0	inch	ı
DTWTOC	•	42.97	ft.	vol/ft:			1.47	gal/ft	
Water Ler	ngth:	34.13	ft.	Ca	se Vol:		50.17	gal	•
Vol x 3 =		150.51	gal	Vol x 5 =			250.85	gal	i
		-							
**** Purge Monitoring **** Purge Method: BLADDER								,	
	рН	S. Cond	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time
Pre-Purge	7.81	1050.0	15.5	2.07	CLEAR	1.60	42.97	0.0	8:05
A.	8.65	999.0	15.0	2.24	CLEAR	3.70	44.68	50.0	8:55
В.	8.37	920.0	15.7	2.56	CLEAR	20.30	44.80	100.0	9:45
C.									
Б.									
Post Purge	8.17	940.0	15.4	218.00	CLEAR	17.40	44.95	151.0	10:36
Pre-Sample	"	"	"	"	"	"	"	155.00	10:40
Sample Post Sample	8.28	950.0	16.2	2.38	CLEAR	12.40	44.81	160.00	10:45
Purge En	d:	10:36				Pump:	DEDIC	CATED	
Purge Sta	ırt:	8:05				Bailer:	N	I/A	
Purge Ler	ngth:	151.0	min	_	i	Bailer Seal:	N	I/A	
Volume P	urged:	151.0	gal	•	F	Purge Rate:	1.00	GPM	
We	eather:	MOSTLY CLOUD	Y, 67 DEGR	EES F					
Sa	mpling Tech	nicians:	SH	•				•	
Co	mments:								

Date:	4/27/2011			_ Monitoring Well Field Sheet						
Client:	Wyeth									
Well ID:	Well:	RCRA I	D-11	Locat	ion:	A.H.P. L	A.H.P. Bound Brook			
Well Dept	t <u>h:</u>	89.80	ft.	Ca	se Size:		6.0	inch		
DTWTOC	: 42.32 ft.			vo	l/ft:		1.47	gal/ft	_	
Water Lei	ngth:	47.48	ft.	Ca	se Vol:		69.80	gal	•	
Vol x 3 =		209.40	gal	Vo	l x 5 =		349.00	gal	' '	
							•			
**** Purge Monitoring **** Purge Method: BLADDER										
	рН	S. Cond uohms/Con	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time	
Pre-Purge	7.13	680.0	15.8	3.22	CLEAR	1.50	42.32	0.0	8:40	
A.	6.65	657.0	15.2	4.04	CLEAR	8.90	43.85	75.0	9:55	
В.	7.21	673.0	15.0	4.05	CLEAR	2.50	43.90	145.0	11:05	
C.										
Post Purge	6.63	685.0	15.5	4.07	CLEAR	10.10	43.71	215.0	12:15	
Pre-Sample	"	"	- "	"		- "		220.00	12:20	
Sample Post Sample	e 6.60	684.0	15.3	3.99	CLEAR	1.20	43.80	225.00	12:25	
Purge En	d <u>:</u>	12:15	_			Pump:	DEDIC	CATED		
Purge Sta	ırt:	8:40	_			Bailer:	N	/ A	•	
Purge Length: 215.0 m		min		E	Bailer Seal:	N	I/A			
Volume P	urged:	215.0	gal		F	ourge Rate:	1.00	GPM		
W	eather:	MOSTLY CLOUD	Y, 68 DEGR	EES F						
Sa	mpling Tech	nicians:	SH					-		
Co	omments:									

Date: _ Sampler: _	4/26/2011 Harold M	eissner	Notes:		irge Pressure				
Flute ID:	YY			Max Pressure: 125 PSI					
-				Discard Initial C	Gallon @ Sam	nple Collection			
Port 1		Port 2		Port 3		Port 4			
Purge Vol Req_	4.5	Purge Vol Req_	4.3	Purge Vol Req	4.3	Purge Vol Req			
Purge 1		Purge 1		Purge 1		Purge 1			
Time Start: _ Time End: _ Volume: _ Color:	14:03 14:12 2.00 It brown	Time Start: Time End: Volume: Color:	14:03 14:12 2.25 Clear	Time Start: Time End: Volume: Color:	14:03 14:12 2.25 Clear	Time Start: Time End: Volume: Color:			
Purge 2		Purge 2		Purge 2		Purge 2			
Time Start: _ Time End: _ Volume: _ Color:	14:28 14:37 2.00 Itbrown	Time Start: Time End: Volume: Color:	14:28 14:37 2.25 Clear	Time Start: Time End: Volume: Color:	14:28 14:37 2.25 Clear	Time Start: Time End: Volume: Color:			
Purge 3		Purge 3		Purge 3		Purge 3			
Time Start: _ Time End: _ Volume: _ Color:	14:47 14:51 1.00	Time Start: Time End: Volume: Color:		Time Start: Time End: Volume: Color:	10:00 10:03 1.00 Clear	Time Start: Time End: Volume: Color:			
Total Volume	5.00	Total Volume	4.50	Total Volume	4.50	Total Volume			
Sample		Sample		Sample		Sample			
Time Start:	15:18	Time Start:	14:58	Time Start:	15:08	Time Start:			
	Clear, Warm, I MS / MSD peri	•	P2+B17						

Date:	4/26/2011		Notes:	Pu	ırge Pressure	:110 PSI			
Sampler:	Harold M	eissner		Sam	ple Pressure	:75 PSI			
Flute ID:	ХХ			Max Pressure: 125 PSI					
-				Discard Initial (Gallon @ San	ple Collection			
Port 1		Port 2		Port 3		Port 4			
Purge Vol Req	4.2	Purge Vol Req_	3.9	Purge Vol Req	N/A	Purge Vol Req			
Purge 1		Purge 1		Purge 1		Purge 1			
Time Start: Time End: Volume: Color:	8:10 8:17 2.25 Clear	Time Start: _ Time End: _ Volume: _ Color:	8:10 8:17 2.25 Clear	Time Start: Time End: Volume: Color:	8:10 8:18 2.25 Clear	Time Start: Time End: Volume: Color:	<u> </u>		
Purge 2		Purge 2		Purge 2		Purge 2			
Time Start: _ Time End: _ Volume: _ Color:	8:33 8:40 2.25 Clear	Time Start: _ Time End: _ Volume: _ Color:	8:33 8:40 2.25 Clear	Time Start: Time End: Volume: Color:	16:20 16:28 2.25 Clear	Time Start: Time End: Volume: Color:	<u> </u>		
Purge 3		Purge 3		Purge 3		Purge 3			
Time Start: _ Time End: _ Volume: _ Color:		Time Start: _ Time End: _ Volume: _ Color:		Time Start: Time End: Volume: Color:		Time Start: Time End: Volume: Color:	<u> </u>		
Total Volume	4.50	Total Volume	4.50	Total Volume	4.50	Total Volume	_		
Sample		Sample		Sample		Sample			
Time Start:	9:00	Time Start:_	9:05	Time Start:	A:M 27-Apr-11	Time Start:			
Comments:	Clear, Warm, I	l light breeze aples in Morning	g of 4-27-11+E	318					

Date:	4/26/2011		Notes:	Pu	ırge Pressure	: 110 PSI			
Sampler:	Harold M	eissner		Sam	ple Pressure	: 75 PSI			
Flute ID:	SS			Max Pressure: 125 PSI					
-				Discard Initial C	Gallon @ San	nple Collection			
Port 1		Port 2		Port 3		Port 4			
Purge Vol Req	4.2	Purge Vol Req_	4.2	Purge Vol Req	4.6	Purge Vol Req			
Purge 1		Purge 1		Purge 1		Purge 1			
Time Start: Time End: Volume: Color:	9:23 9:33 2.25 Clear	Time Start: _ Time End: _ Volume: _ Color:	9:23 9:33 2.25 Clear	Time Start: Time End: Volume: Color:	9:23 9:33 2.25 Clear	Time Start: Time End: Volume: Color:			
Purge 2		Purge 2		Purge 2		Purge 2			
Time Start: Time End: Volume: Color:	9:50 9:59 2.25 Clear	Time Start: _ Time End: _ Volume: _ Color:	9:50 9:59 2.25 Clear	Time Start: Time End: Volume: Color:	9:50 9:59 2.25 Clear	Time Start: Time End: Volume: Color:			
Purge 3		Purge 3		Purge 3		Purge 3			
Time Start: Time End: Volume: Color:		Time Start: _ Time End: _ Volume: _ Color:		Time Start: Time End: Volume: Color:		Time Start: Time End: Volume: Color:			
Total Volume	4.50	Total Volume	4.50	Total Volume	5.50	Total Volume			
Sample		Sample		Sample		Sample			
Time Start:	10:15	Time Start:_	10:20	Time Start:	10:30	Time Start:			
		 Still. performed on ppears to be Al							

Date:	4/26/2011		Notes:	Pu	ırge Pressur	e:110 PSI	
Sampler:	Harold M	leissner		Sam	ple Pressure	e: 75 PSI	
Flute ID:	ZZ			N	Max Pressure	e: 125 PSI	
_				Discard Initial (Gallon @ Sa	mple Collection	
Port 1		Port 2		Port 3		Port 4	
Purge Vol Req_	5.1	Purge Vol Req_	5.1	Purge Vol Req	5.4	Purge Vol Req	5.3
Purge 1		Purge 1		Purge 1		Purge 1	
Time Start: _ Time End: _ Volume: _ Color:	11:25 11:36 2.25 Clear	Time Start: Time End: Volume: Color:	11:25 11:36 2.50 Clear	Time Start: Time End: Volume: Color:	11:25 11:37 2.50 Clear	Time Start: Time End: Volume: Color:	11:25 11:36 2.50 Clear
Purge 2		Purge 2		Purge 2		Purge 2	
Time Start: _ Time End: _ Volume: _ Color:	11:56 12:07 2.25 Clear	Time Start: Time End: Volume: Color:	11:56 12:07 2.50 Clear	Time Start: Time End: Volume: Color:	11:42 11:54 2.50 Clear	Time Start: Time End: Volume: Color:	11:42 11:54 2.50 Clear
Purge 3		Purge 3		Purge 3		Purge 3	
Time Start: Time End: Volume: Color:	12:17 12:22 1.00 Clear	Time Start: _ Time End: _ Volume: _ Color:	12:17 12:22 1.00 Clear	Time Start: Time End: Volume: Color:	12:05 12:10 1.00 Clear	Time Start: Time End: Volume: Color:	12:05 12:10 1.00 Clear
Total Volume	5.50	Total Volume	6.00	Total Volume	6.00	Total Volume	6.00
Sample		Sample		Sample		Sample	
Time Start:	12:45	Time Start:	12:47	Time Start:	12:25	Time Start:	12:30
Comments: I	Clear, Warm, I Filed Blank [12 Delayed by lar	•	g grass in area	a.			r. 7-5-11

Date:	4/26/2011				Monit	toring \	Well F	ield S	heet
Client:	Wyeth								
Well ID:	Well:	PW-	3	Locat	ion:	A.H.P. E	Bound I	Brook	
Well Depti	<u>h:</u>		ft.	Ca	se Size:			inch	
DTWTOC:			ft.	vol/ft:				gal/ft	<u>.</u>
Water Len	gth:		ft.	Case Vol:				gal	
Vol x 3 =			gal	Vo	l x 5 =			gal	
**** Pu	ırge Mor	nitoring ***	*	Pu	rge Method	J:			
	рН	S. Cond uohms/Con	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time
Pre-Purge	OFF						N/A	0.0	
A.									
B. C.									
D.									
Post Purge			T		T			I	
Pre-Sample									
Sample Post Sample	9.65	2370.0	14.8	5.28	CLEAR	13.80	N/A	N/A	13:15
Purge End	d:		_			Pump:			-
Purge Sta	rt:					Bailer:	N	I/A	
Purge Len	ngth:		_		i	Bailer Seal:	N	I/A	
Volume P			- gal			Purge Rate:		GPM	•
	3 - ···		9-1		•	9			•
We	ather:								
Sar	mpling Techn	icians:	НМ					-	

PUMP COULD NOT BE SHUTDOWN. NO WATER TABLE MEASUREMENT AVAILABLE

Client:	Wyeth								
Well ID:	Well:	PW-	-2	Locati	ion:	<u>A.H.P. E</u>	Bound E	Brook	
Well Dept	th:		ft.	Ca	se Size:			inch	
ртитос	:		ft.	vo	l/ft:		gal/ft		
Water Le	ngth:		ft.	Ca	se Vol:				
Vol x 3 =			gal	Vo	l x 5 =	gal			! !
									<u>.</u>
**** P	urge Mo	nitoring *	***	Pu	rge Metho	d:			•
	рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time
		uohms/Con	degree C	mg/L	apparent	ntu	ft	gal	
Pre-Purge	OFF						78.79		13:10
A.									
B.									
C.									
D.									
Post Purge	T		l			T T			
Pre-Sample									
Sample									
Post Sample	е								
Purge En	d <u>:</u>		-			Pump:			-
Purge Sta	ar <u>t:</u>					Bailer:	N	/ A	
Purge Le	ngth:		_		į	Bailer Seal:	N	/ A	•
Volume F	ourged:		gal		F	Purge Rate:		GPM	
	eather:								
Sa	ampling Tech	inicians:	HM			_			

4/26/2011

Date:

	4/26/2011			IVIOIII	orning v	WCII I	icia Ci	icct
Wyeth								
Well:	RCRA	D-7	Locat	ion:	A.H.P. E	A.H.P. Bound Brook		
h:	66.20	ft.	Case Size:		6.0		inch	
	26.71	ft. vol/ft:			1.47	gal/ft		
ıgth:	39.49	ft. Case Vol:			58.05	gal		
	174.15	gal	Vo	l x 5 =		290.25	gal	
ırge Mor	nitoring ***	*	Pu	rge Method	l <u>:</u>	BLADDER		
рН	S. Cond	Temp	D.O mg/L	Color	Turbitity	DTW ft	Vol gal	Time
								7:45
				+				8:43
6.41	1350.0	16.0	2.15	CLEAR	6.00	29.22	116.0	9:41
6.61	1390.0	16.2	1 99	CLEAR	0.00	29.23	175.0	10:40
"	"	"	"	"	"	"	"	"
							179.00	10:44
6.64	1380.0	16.0	1.68	CLEAR	1.10	29.28	184.00	10:49
d:	10:40	_			Pump:	DEDIC	CATED	
rt:	7:45	_			Bailer:	N	/ A	
gth:	175.0	min		E	Bailer Seal:	ler Seal: N/A		
	Well: h: egth: pH 6.38 6.62 6.41 6.61 "	Wyeth h: 66.20 26.71 agth: 39.49 174.15 PH S. Cond uohms/Con 6.38 1360.0 6.62 1320.0 6.41 1350.0 6.61 1390.0 "" 6.64 1380.0 d: 10:40 rt: 7:45	Well: RCRA D-7	Wyeth RCRA D-7 Locat	Well: RCRA D-7 Location:	Wyeth Well: RCRA D-7 Location: A.H.P. E	Wyeth	Wyeth Well: RCRA D-7 Location: A.H.P. Bound Brook

PARTIAL SUN, 63 DEGREES F

SH

Date:		4/26/2011	Monitoring Well Fleid Sneet						
Client:	Wyeth								
Well ID:	Well:	RCRA	D-6	D-6 Location:		A.H.P. E	A.H.P. Bound Brook		
Well Dept	h:	58.70	ft.	ft. Case Size:			6.0	inch	i
DTWTOC:		28.47	ft.	vo	I/ft:		1.47	gal/ft	
Water Len	gth:	30.23		Case Vol:			44.44	gal	ı
Vol x 3 =		133.32	gal	Vo	ol x 5 =		222.20	gal	ı
									·
**** Pu	ırge Mor	nitoring ***	*	Pu	ırge Method	l:	BLADDER		
	рН	S. Cond uohms/Con	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time
	0.10	1000.0	111	0.00	CLEAD	0.50	00.47	0.0	0.15
Pre-Purge	6.12	1620.0 1720.0	14.4 15.6	3.20 3.13	CLEAR CLEAR	2.50	28.47 31.16	0.0	8:15
A.	6.76 7.07	1720.0	15.0	3.09	CLEAR	0.00	31.16	44.0 88.0	8:59 9:43
B. C.	7.07	1700.0	15.1	3.09	CLEAN	0.00	31.23	00.0	9.43
D.									
5.									
Post Purge	6.62	1670.0	15.8	1.74	CLEAR	9.90	31.88	134.0	10:29
Pre-Sample	"	"	"	"	"	11	"	"	"
Sample								138.00	10:33
Post Sample	6.81	1660.0	16.0	1.32	CLEAR	1.40	31.10	143.00	10:38
Purge End	l <u>:</u>	10:29	_			Pump:	DEDIC	CATED	
Purge Sta	rt:	8:15	<u> </u>			Bailer:		/ A	ı
Purge Ler	gth:	134.0	min		i	Bailer Seal:	N	I/A	ı
Volume P	urged:	134.0	gal		F	Purge Rate:	1.00	GPM	ı

Weather: MOSTLY SUNNY, 65 DEGREES F

Date:		4/26/2011			Monit	toring \	Well F	ield Sl	neet
Client:	Wyeth								
Well ID:	Well:	RCRA	D-5	Locat	ion:	A.H.P. E	Bound E	Brook	
Well Depth	1:	59.30	ft.	Ca	se Size:		6.0	inch	
DTWTOC:		32.13	ft.	vo	l/ft:		1.47	gal/ft	i
Water Len	gth:	27.17	ft.	Са	se Vol:		39.94	gal	ı
Vol x 3 =		119.82	gal	Vo	l x 5 =		199.70	gal	
**** P u	ırge Moi	nitoring ***	*	Pu	rge Methoc	i:	BLADDER		
	рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time
		uohms/Con	degree C	mg/L	apparent	ntu	ft	gal	
Pre-Purge	7.25	910.0	15.4	2.86	CLEAR	47.60	32.13	0.0	9:20
A.	6.97	940.0	15.5	2.80	CLEAR	0.00	33.55	40.0	10:00
В.	7.05	970.0	15.7	2.05	CLEAR	0.00	33.65	95.0	10:55
C.									
<i>D</i> .									
Post Purge	7.03	970.0	15.5	1.82	CLEAR	0.00	33.60	120.0	11:20
Pre-Sample	"	"	"	"	"	"	"	"	"
Sample	7.04	000.0	15.0	1.70	OLEAD	0.50	00.00	125.00	11:25
Post Sample	7.04	960.0	15.9	1.76	CLEAR	0.50	33.68	130.00	11:30
Purge End	l:	11:20				Pump:	DEDIC	CATED	
Purge Star	rt:	9:20	_ _			Bailer:	N	/ A	
Purge Len	gth:	120.0	min		ı	Bailer Seal:	N	I/A	ı
Volume Pu	ırged:	120.0	gal		F	Purge Rate:	1.00	GPM	
We	ather:	SUNNY, 71 DEG	REES F						

SH

Date:		4/26/2011	Monitoring Well Field Sheet					ICCL	
Client:	Wyeth								
Well ID:	Well:	RCRA	D-4	Location:		A.H.P. E	A.H.P. Bound Brook		
Well Dept	h:	83.80	ft.	ft. Case Size:		6.0		inch	ī
DTWTOC:		32.54	ft.	vol/ft:			1.47	gal/ft	
Water Ler	gth:	51.26	ft.	Ca	se Vol:		75.35	gal	ı
Vol x 3 =		226.05	gal	Vo	l x 5 =		376.75	gal	
**** Pı	ırge Mor	nitoring ***	*	Pu	rge Method	:	BLADDER		
, ,									
, ,	рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time
, ,	рН	S. Cond uohms/Con	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time
		uohms/Con	degree C	mg/L	apparent	ntu	ft	gal	
Pre-Purge	6.85	uohms/Con 936.0	degree C	mg/L 4.90	apparent CLEAR	ntu 2.30	ft 32.54	gal 0.0	12:05
Pre-Purge A.	6.85 6.54	936.0 921.0	degree C 15.5 15.8	4.90 2.98	apparent CLEAR CLEAR	2.30 0.00	32.54 33.35	0.0 75.0	12:05 13:20
Pre-Purge A. B.	6.85	uohms/Con 936.0	degree C	mg/L 4.90	apparent CLEAR	ntu 2.30	ft 32.54	gal 0.0	12:05
Pre-Purge A.	6.85 6.54	936.0 921.0	degree C 15.5 15.8	4.90 2.98	apparent CLEAR CLEAR	2.30 0.00	32.54 33.35	0.0 75.0	12:05 13:20
Pre-Purge A. B. C.	6.85 6.54	936.0 921.0	degree C 15.5 15.8	4.90 2.98	apparent CLEAR CLEAR	2.30 0.00	32.54 33.35	0.0 75.0	12:05 13:20
Pre-Purge A. B. C.	6.85 6.54 6.74	936.0 921.0	degree C 15.5 15.8	4.90 2.98 3.10	apparent CLEAR CLEAR	2.30 0.00	32.54 33.35	9al 0.0 75.0 150.0	12:05 13:20 14:35
Pre-Purge A. B. C. D.	6.85 6.54 6.74	936.0 921.0 919.0	15.5 15.8 15.5	4.90 2.98 3.10	apparent CLEAR CLEAR CLEAR	2.30 0.00 0.00	32.54 33.35 33.36	9al 0.0 75.0 150.0 227.0	12:05 13:20 14:35
Pre-Purge A. B. C. D. Post Purge Pre-Sample Sample	6.85 6.54 6.74	936.0 921.0 919.0 945.0	degree C 15.5 15.8 15.5 15.3 "	4.90 2.98 3.10	apparent CLEAR CLEAR CLEAR CLEAR	0.00 0.00	32.54 33.35 33.36 33.22	9al 0.0 75.0 150.0 227.0 " 231.00	12:05 13:20 14:35 15:52 " 15:56
Pre-Purge A. B. C. D. Post Purge Pre-Sample	6.85 6.54 6.74	936.0 921.0 919.0	15.5 15.8 15.5	4.90 2.98 3.10	apparent CLEAR CLEAR CLEAR	2.30 0.00 0.00	32.54 33.35 33.36	9al 0.0 75.0 150.0 227.0	12:05 13:20 14:35 15:52
Pre-Purge A. B. C. D. Post Purge Pre-Sample Sample	6.85 6.54 6.74 6.74	936.0 921.0 919.0 945.0	degree C 15.5 15.8 15.5 15.3 "	4.90 2.98 3.10	apparent CLEAR CLEAR CLEAR CLEAR	0.00 0.00	32.54 33.35 33.36 33.22 "	9al 0.0 75.0 150.0 227.0 " 231.00	12:05 13:20 14:35 15:52 " 15:56
Pre-Purge A. B. C. D. Post Purge Pre-Sample Sample Post Sample	6.85 6.54 6.74 6.74	936.0 921.0 919.0 945.0	degree C 15.5 15.8 15.5 15.3 "	4.90 2.98 3.10	apparent CLEAR CLEAR CLEAR CLEAR	0.00 0.00 0.00 Pump:	32.54 33.35 33.36 33.22 " 33.31	227.0 " 231.00 236.00	12:05 13:20 14:35 15:52 " 15:56
Pre-Purge A. B. C. D. Post Purge Pre-Sample Sample Post Sample	6.85 6.54 6.74 6.74 " 6.76	936.0 921.0 919.0 945.0 " 926.0	degree C 15.5 15.8 15.5 15.3 "	4.90 2.98 3.10	apparent CLEAR CLEAR CLEAR CLEAR " CLEAR	0.00 0.00 0.00 Pump:	32.54 33.35 33.36 33.22 " 33.31	9al 0.0 75.0 150.0 227.0 " 231.00 236.00	12:05 13:20 14:35 15:52 " 15:56

SUNNY, 77 DEGREES F

SH

Weather:

Date:		4/26/2011			Monit	coring	well F	ieia Si	neet
Client:	Wyeth								
Well ID:	Well:	RCRA	D-3	Locat	ion:	A.H.P. E	Bound E	Brook	1
Well Dept	h:	75.70	ft.	Ca	se Size:		6.0	inch	i
DTWTOC		32.93	ft.	vo	l/ft:		1.47	gal/ft	i
Water Ler	gth:	42.77	ft.	Са	se Vol:		62.87	gal	1
Vol x 3 =		188.61	gal	Vo	l x 5 =		314.35	gal	i
**** Purge Mo		nitorina ***	*	Pu	rge Method		BLADDER		
	рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time
		uohms/Con	degree C	mg/L	apparent	ntu	ft	gal	
	7.07	000.0	15.4	7 1 1	OLEAD	0.00	00.00	0.0	10.05
Pre-Purge	7.07 6.51	999.0 950.0	15.4 15.6	7.11 1.75	CLEAR CLEAR	0.00	32.93 33.38	0.0 63.0	12:25 13:28
А. В.	6.90	940.0	16.2	0.85	CLEAR	10.60	33.30	126.0	14:31
C.	0.00	0.10.0	10.2	0.00	OLL/ (III	10.00	00.00	120.0	1 1.01
D.									
	<u>'</u>				<u>, </u>				
Post Purge	6.70	950.0	15.8	2.20	CLEAR	0.00	33.40	189.0	15:34
Pre-Sample	"	"	"	"	"	"	"	"	"
Sample								194.00	15:39
Post Sample	6.61	960.0	15.2	1.76	CLEAR	0.00	33.32	199.00	15:44
Purge End	d:	15:34	_			Pump:	DEDIC	CATED	
Purge Sta	rt:	12:25	_			Bailer:	N	/ A	ı
Purge Ler	ngth:	189.0	min		ı	Bailer Seal:	N	I/A	ı
Volume P	urged:	189.0	gal		F	Purge Rate:	1.00	GPM	1
We	eather:	SUNNY, 79 DEG	REES F						

SH

Date:		4/26/2011			Woni	coring	well F	ieia Si	neet
Client:	Wyeth								
Well ID:	Well:	RCRA	D-2	Location:		A.H.P. E	Bound E	Brook	ı
Well Dept	h <u>:</u>	81.40	ft.	Ca	ıse Size:	6.0 in		inch	ı
DTWTOC	:	34.37	ft.	vo	I/ft:		1.47	gal/ft	•
Water Ler	ngth:	47.03	ft.	Case Vol:			69.13 gal		•
Vol x 3 =		207.39	gal	Vo	ol x 5 =		345.65	gal	ī
**** Pt	urge Mo	nitoring ***	*	Purge Method:			BLADDER		
	рН	S. Cond	Temp	D.O	Color	Turbitity	DTW	Vol	Time
		uohms/Con	degree C	mg/L	apparent	ntu	ft	gal	
Pre-Purge	6.79	999.0	15.7	2.77	CLEAR	0.00	34.37	0.0	12:45
A.	6.70	900.0	15.9	2.23	CLEAR	0.00	34.56	69.0	13:54
В.	6.65	900.0	16.3	2.03	CLEAR	0.50	34.57	138.0	15:03
C.									
D.									
	T	T	1 .= - 1		1	T T		T	
Post Purge	6.88	900.0	15.3	2.57	CLEAR "	0.00	34.42	208.0	16:13
Pre-Sample	"	"	"		"	"			
Sample Post Sample	6.91	900.0	15.2	1.80	CLEAR	1.20	34.45	212.00 217.00	16:17 16:22
rost Sample	.0.01	300.0	10.2	1.00	OLLAIT	1.20	04.40	217.00	10.22
Purge End	d:	16:13	_			Pump:	DEDI	CATED	i
Purge Sta	rt:	12:45	_			Bailer:	N	I/A	1
Purge Ler	ngth:	207.0	min		ı	Bailer Seal:	N	I/A	ı
Volume P	urged:	208.0	gal		F	Purge Rate:	1.00	GPM	1
We	eather:	SUNNY, 82 DEG	REES F						

SH

Date:		<i>5/19/2011</i>	5/19/2011			toring	Well F	Field S	heet
Client:	Wyeth								
Well ID:	Well:	F10D-V	V2S	Location:		A.H.P.B	A.H.P.Bound Brook		
Well Dept	<u>h:</u>	12.40	ft.	Case Size:			2.0 inch		•
DTWTOC:		5.03	ft.	vo	ol/ft:		0.16	gal/ft	-
Water Ler	gth:	7.37	ft.	Ca	ase Vol:		1.18	gal	•
Vol x 3 =		3.54	3.54 gal		ol x 5 =		5.90	gal	•
									•
**** Pl	ırge Mo	onitoring ***	*	Pι	ırge Method	i:	PERISTAL	.IC	
	рН	S. Cond uohms/Con	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time
Pre-Purge	4.49	98600.0	11.7	6.47	BROWN	304.00	5.03	0.00	12:20
A.	4.32	90000.0	10.6	4.83	CLEAR	35.70	0.00	1.25	12:25
B.	4.21	90000.0	10.6	1.60	CLEAR	16.00		2.50	12:30
C.									
D.									<u> </u>
Post Purge	4.06	90000.0	10.5	< 0.1	CLEAR	12.70	6.11	3.75	12:35
Pre-Sample	"	"	"	"	"	"	"	"	"
Sample								5.00	12:40
Post Sample	4.13	90000.0	10.5	1.03	CLEAR	6.21	6.14	6.25	12:45
Purge End	d:	12:35	_			Pump:	soln	isr-04	<u>.</u>
Purge Sta	rt:	12:20	_			Bailer:	N	I/A	-
Purge Ler	ngth:	15.0	min	i	E	Bailer Seal:	N	I/A	•
Volume P	urged:	3.75	gal	ı	P	urge Rate:	0.25	GPM	•
We	eather:	Hot, Still Clear							
Sa	mpling Tec	hnicians:	НМ	ı				•	

Date:	e: 5/19/2011			Monitoring Well Field Sheet					
Client: Wyeth									
Well ID:	Well:	F10D-W	/2BS	Location:		A.H.P.Bound Brook			
Well Dept	h:	42.10	ft.	Ca	ise Size:		2.0	inch	
DTWTOC:		5.61	ft.	vol/ft:			0.16	gal/ft	
Water Length:		36.49	ft.	Case Vol:			5.84	gal	
Vol x 3 = 17.5		17.52	gal	Vol x 5 =			29.20	gal	
**** Pu	ırge Mo	nitoring ***	r*	Pι	ırge Method	d:	PERISTAL	.IC	
	рН	S. Cond uohms/Con	Temp degree C	D.O mg/L	Color apparent	Turbitity ntu	DTW ft	Vol gal	Time
Dre Dures	6.06	64300.0	13.5	4.14	BROWN	84.30	5.61	0.0	12:50
Pre-Purge A.	6.31	9300.0	11.8	3.02	CLEAR	25.10	5.01	7.0	13:00
В.	6.16	4950.0	12.0	2.23	CLEAR	40.20		14.0	13:10
C.									
D.									
	6.28	4700.0	11.8	0.05	CLEAR	11.60	8.14	21.0	12:20
Post Purge Pre-Sample	6.30	5640.0	12.1	2.35 9.61	CLEAR	11.60 17.20	0:28	21.0	13:20
Sample	0.00	00 10.0	12.1	0.01	OLL, iii	17.20	0.20	24.50	13:25
Post Sample	6.32	5280.0	14.0	4.23	CLEAR	20.80	8.17	31.50	13:35
Purge End: 13:20		13:20				Pump:	soln	isr-04	
Purge Start: 1		12:50	_			Bailer:	N	I/A	
Purge Length:		30.0	min	Bailer Seal:		N/A			
Volume Purged:		21.00	gal	Purge Rate:		0.70	GPM		
We	eather:								
Sa	mpling Tech	nicians:	НМ					-	

Appendix C

Trends Graphs (On Attached CD)

Appendix D

Data Validation Review

Appendix - PFIZER first semi-annual 2011 data review

A limited review of quality control data summary forms was performed for the environmental samples collected on 4/7/11, 4/14/11, 4/26/11, 4/27/11, 4/28/11, 4/29/11, 4/30/11, 5/13/11, 5/18/11 and 5/19/11.

The following is a report on the results of rejected and negated data identified during this limited review. Analyses performed by the laboratory included TCL volatile organic compounds (VOCs), TCL semivolatile organic compounds (SVOCs), TAL metals, cyanide, chloride, phenol, total organic halides (TOX), total dissolved solids (TDS), total organic carbon (TOC), Gross Alpha, Gross Beta, Radium 226 and Radium 228 analysis.

One trip blank was provided for each sample set submitted for TCL VOC analysis and sent to the laboratory on 4/7/11, 4/14/11, 4/26/11, 4/27/11, 4/28/11, 4/29/11, 4/30/11, 5/13/11, 5/18/11 and 5/19/11.

A field blank was collected on the sampling days of 4/26/11, 4/27/11, 4/28/11, 4/29/11, 4/30/11, 5/18/11 and 5/19/11. The analyses requested for the field blanks included TCL VOCs, TCL SVOCs, TAL metals, cyanide, chloride, phenol, Gross Alpha, Gross Beta, Radium 226 and Radium 228 analyses.

Field duplicate analyses were collected and analyzed for TCL VOCs, TCL SVOCs, TAL metals, cyanide, chloride, phenol, TOX, TDS, TOC, Gross Alpha, Gross Beta, Radium 226 and Radium 228 analyses.

Summary forms of only quality control data listed in the current New Jersey Reduced Laboratory Data Deliverables guidance and data consistent with previous evaluations were reviewed during data validation. Summary forms for the following parameters were reviewed for chemical analyses (where applicable): method, field and trip blanks, calibrations, internal standard evaluations, GC/MS instrument performance checks, surrogate recovery, serial dilution analysis, laboratory control sample (LCS) analysis, field duplicate analysis, laboratory duplicate analysis, interference check, analysis of matrix spike/matrix spike duplicate (MS/MSD) sets and holding times.

The following parameters were evaluated for radiochemistry analyses (where applicable): holding times, method and field blanks, LCS analysis, MS/MSD analysis, field duplicate analysis, laboratory duplicate analysis, and MS/MSD analysis.

Minor excursions were noted during the data review process for holding time, calibration, surrogate, LCS, MS/MSD, field duplicate and serial dilution excursions.

In addition, the following observations were made pertaining to the sample collection and documentation:

• The sample identifications used by the laboratory were inconsistent with the identifications documented on the chain-of-custody records associated with samples collected 4/30/11 and 4/14/11.

The major excursions that resulted in rejection of sample results, in accordance with NJDEP validation guidance, included the following:

- The results for 2-nitropropane in samples 32R01 5/13/11, TRIPBK01 5/13/11, PZ-12-1U01 5/18/11, PZ-12-1L01 5/18/11, PZ-12-2L01 5/18/11, PZ-12-2U01 5/18/11, PZ-12-3-U01 5/18/11, PZ-12-3-U01 5/18/11, PZ-12-3-U01 5/18/11, PZ-12-3-U01 5/18/11, PZ-12-3-U01 5/18/11, PZ-12-4U01 5/18/11, PZ-12-4U01 5/18/11, PZ-12-5 U01 5/18/11, PZ-12-6 U01 5/18/11, PZ-12-5 L01 5/18/11, PZ-12-6 L01 5/18/11, 01-MW-1U01 5/18/11, 01-MW-1L01 5/18/11, 01-MW-2 U01 5/18/11, 01-MW-2 U01 5/18/11, 01-MW-2 U01 5/18/11, TRIP BK 5/18/11, TRIP BK 5/18/11, FLOD W2BS01 5/19/11, FIELD BK01 5/19/11, TRIP BK01 5/19/11, and FLOD W2S 01 5/19/11 were flagged as rejected, R, 64A due to major response factor initial calibration excursions. The laboratory indicated that the low response factor was a result of the quantitation ion used due to a co-eluting target analyte.
- The result for pyridine in sample PW-301 4/26/11 was flagged as rejected R, 88A due to a major LCS recovery excursion.
- The results for benzidine, aniline and pyridine in samples FLOD W2S01 5/19/11, FLOD W2BS01 5/19/11 and FIELD BK 01 5/19/11 were flagged as rejected R, 88A due to major LCS recovery excursions.

Sample results were negated in accordance with NJDEP validation guidelines for the following samples based on concentrations observed in blanks:

- Bis(2-ethyhexyl)phthalate in sample TFP941R 01 4/27/11 and naphthalene in samples AAA 01 4/29/11 and KKK 01 4/29/11 were flagged as negate, 3.
- 2-Chloroaniline in sample PW-3 01 4/26/11 and o-Toluidine in samples PW-3 01 4/26/11, RCRA-D15 02 4/27/11, and RCRA D9 01 4/28/11 were flagged as negate, B, 1.

The following revisions were made during data validation due to excursions identified in the analyses originally reported:

• The following results reported for SVOC analyses were revised by the laboratory due to major surrogate recovery excursions: AAA01 4/29/11, III01 4/29/11, KKK01 4/29/11, 38R01 4/29/11, MW-1A 4/30/11 and MW-22R01 4/30/11. The revised results met validation surrogate recovery criteria.

The remaining minor excursions detected would not require rejection or negation of data based on NJDEP data validation standard operating procedures.

Based on the limited review performed, generally both field and laboratory quality control results indicated that the data produced during the sampling and analysis program, which are presented in this report, are valid.

Considering the complete data set for this investigation, the overall data usability in terms of data that has not been rejected or negated is greater than 95 percent, which meets the criterion of greater than 95 percent usability.

Final review by

Karen Storne

Technical Associate/Data Validator

Date

Final:

Impound 8 Leachate Monitoring Data

Cell 1

een i			
Monitoring Date	Average Leachate Detection (Secondary System) Quantity (gpad)		
January 5, 2011	12		
January 12, 2011	5		
January 19, 2011	282		
January 26, 2011	5		
February 2, 2011	10		
February 9, 2011	159		
February 16, 2011	107		
February 23, 2011	11		
March 2, 2011	14		
March 9, 2011	17		
March 16, 2011	17		
March 23, 2011	17		
March 30, 2011	28		
April 6, 2011	14		
April 13, 2011	136		
April 20, 2011	137		
April 27, 2011	0		
May 4, 2011	15		
May 11, 2011	1		
May 18, 2011	0		
May 25, 2011	68		
June 1, 2011	0		
June 8, 2011	15		
June 15, 2011	14		
June 22, 2011	125		
June 29, 2011	35		

Cell 2

	Average Leachate Detection (Secondary
Monitoring Date	System) Quantity
	(gpad)
January 5, 2011	0
January 12, 2011	0
January 19, 2011	0
January 26, 2011	0
February 2, 2011	0
February 9, 2011	56
February 16, 2011	0
February 23, 2011	0
March 2, 2011	0
March 9, 2011	0
March 16, 2011	0
March 23, 2011	0
March 30, 2011	0
April 6, 2011	50
April 13, 2011	0
April 20, 2011	0
April 27, 2011	0
May 4, 2011	0
May 11, 2011	0
May 18, 2011	0
May 25, 2011	0
June 1, 2011	0
June 8, 2011	0
June 15, 2011	0
June 22, 2011	0
June 29, 2011	0

Cell 3

	Average Leachate Detection (Secondary		
Monitoring Date	System) Quantity		
	(gpad)		
January 5, 2011	0		
January 12, 2011	0		
January 19, 2011	0		
January 26, 2011	0		
February 2, 2011	0		
February 9, 2011	0		
February 16, 2011	0		
February 23, 2011	0		
March 2, 2011	0		
March 9, 2011	0		
March 16, 2011	0		
March 23, 2011	325		
March 30, 2011	0		
April 6, 2011	0		
April 13, 2011	0		
April 20, 2011	0		
April 27, 2011	0		
May 4, 2011	0		
May 11, 2011	0		
May 18, 2011	0		
May 25, 2011	0		
June 1, 2011	468		
June 8, 2011	0		
June 15, 2011	0		
June 22, 2011	0		
June 29, 2011	0		

Cell 4

	Average Leachate Detection (Secondary		
Monitoring Date	System) Quantity		
	(gpad)		
January 5, 2011	0		
January 12, 2011	0		
January 19, 2011	0		
January 26, 2011	0		
February 2, 2011	0		
February 9, 2011	0		
February 16, 2011	0		
February 23, 2011	0		
March 2, 2011	0		
March 9, 2011	0		
March 16, 2011	0		
March 23, 2011	0		
March 30, 2011	0		
April 6, 2011	0		
April 13, 2011	78.80		
April 20, 2011	0		
April 27, 2011	0		
May 4, 2011	0		
May 11, 2011	0		
May 18, 2011	0		
May 25, 2011	0		
June 1, 2011	0		
June 8, 2011	0		
June 15, 2011	0		
June 22, 2011	0		
June 29, 2011	0		

Groundwater Velocity Calculations

Appendix F - Groundwater velocity calculation

1. Background Information

K: Hydraulic Conductivity

1.52 x 10⁻³ ft/min (previous reports)

i: Hydraulic Gradient (from contour plan Figure 4-3)

Eastern side calculated from well RCRA-D1 to RCRA-D6:

$$28.56 - 24.82 = 0.005$$
 ft/ft

817

Western side calculated from well RCRA-D14 to RCRA-D11:

$$29.70 - 24.61 = 0.006$$
 ft/ft

860

A: Cross-sectional Area

Q: Discharge

V: Specific Discharge

v: Actual flow velocity

n: Porosity

estimated to be 0.10 (from Freeze & Cherry 1979)

2. Darcy's Law

Q = KiA

3. Dividing (Q) by (A) to obtain specific discharge (V)

$$V = Ki$$

4. To account for porosity, (V) is divided by (n). This is results from the fact that groundwater only flows through pore spaces in the material.

$$v = V/n$$

The following provides the flow calculation for the gradient determined above.

5. Eastern Side Western Side

Groundwater flow from Groundwater flow from

well RCRA-D1 to RCRA-D6 well RCRA-D14 to RCRA-D11:

 $v = 7.60 \times 10^{-5} \text{ ft/min}$ $v = 9.12 \times 10^{-5} \text{ ft/min}$

v = 39.95 ft/yr v = 47.93 ft/yr

Appendix G

Description of Statistical Methods

To:

J. Jerome

· Date:

21 Jan 199BLASLAND, BOUCK & LEE NEW JERSEY

Bound Brook Location:

Copy to:

P. Bruey

C. Costello (BB&L)

From:

P. Portini

Location:

Stamford

Extension:

2685

Subject:

. . (XXX)

_-- .-

p:yy

5 7

激素

Groundwater Monitoring Statistical Test

Reference:

Memo, P.F. to J.J., "Impound 8 detection monitoring program", 2 June 1987.

This note relates to a statistical test recommended (ref.) for comparing indicator parameters for downgradient wells with a set of upgradient wells. Intended to properly account for well-to-well (spatial) variability, the t-test statistic is

$t_i = (y_i - \bar{x})/s\sqrt{(1 + 1/n)}$

where x and s (with n-1 degrees of freedom) are the average and standard deviation of results for n upgradient wells; and y, is observed for the i-th downgradient well. Critical values based on Dunnett(1955) were recommended to take account of the multiple comparisons problem, which arises when tests are carried out for several downgradient wells simultaneously.

Critical values for the t-test are required for the case where results from nine downgradient wells are to be compared against the distribution from four upgradient wells. The parameters are slightly outside the range given by Dunnett,

The critical value for the t-test depends on:

- The significance level. We understand that the 0.05 level is to be used.
- The number of degrees of freedom for s. This is n-1 = 3 for four upgradient wells used.
- Whether a one-sided or two-sided test is desired. In a one-sided test, only positive t, larger than a critical value are statistically significant. In a two-sided test, t, positive or negative is significant if larger in absolute value than the critical value.
- Whether the multiple comparisons problem is to be taken into account. If not, Student's t critical values apply. However, the

expacted number of rejections, assuming all k downgradient wells are effectively in the same population as upgradient, will be 0.05*k. Dunnett critical values are intended to control the overall probability of rejection on the assumption of no up- versus down-difference to 0.05. Critical values are percentage points of the distribution of max(t;).

- When account of multiple comparisons is to be taken, the number of downgradient wells, k, being compared at one time with upgradients. In the present case, k=9.

1913 1

(Abb

- The ratio of numbers of observations for each treatment to the numbers of controls. This is a technical item in the statistical theory. In the present case, the parameter ρ (rho) equals 1/(1+n) = 0.2.

We looked into the literature on tabulation of critical values for this test statistic. Dunnett(1955,1964) gives 0.05 level oritical values for one and two sided multiple comparisons for $\rho=0.5$, degrees of freedom 5 or greater, and k up to 9. Hahn and Hendrickson(1971) give critical values for two-sided tests for values of ρ including 0.2, degrees of freedom 3 or greater, and k up to 20. They do not give values for one-sided tests; the value for two-sided level 0.10 is used below as an approximation to one-sided level 0.05. Bechhofer and Dunnett(1988) is the most recent tabulation. This is not readily available, so has not been consulted.

Critical t values for comparison of nine downgradient with four upgradient wells using t. (i=1,...,9) as above are as follows. Student's t figures are as commonly tabulated for 3 degrees of freedom and 0.05 significance. Multiple comparisons t figures are from Table 2 of Hahn and Hendrickson(1971), for $\rho=0.2$, df = 3, k = 9 (by interpolation between k=8 and k=10).

Critical t value for 0.05 significance level

Two-sided

Debia-enO

,,		
Student's t: The t. statistic for each downgradient well is below the critical value with probability 0.95 when y, comes from the same normal population as x1,,x4.	'2.35	3,18
Multiple Comparisons t: All t statistics for nine downgradient wells are below the critical value with probability 0.95 when y ₁ ,,y ₉ come from same normal population as x ₁ ,,x ₄ .	4.31*	5.61
Critical value for 0.10 level two-sided	test.	

REFERENCES:

6773

- C. W. Dunnett (1955). "A multiple comparison procedure for comparing several treatments with a control", J. Amer Statist. Assoc. 50:1096-1121.
- C. W. Dunnett (1964), "New tables for multiple comparisons with a control", Biometrics 20:482-491. (supersede table 2a and 2b of the 1955 paper.)
- G. J. Hahn and R. W. Robertson (1971), "Distribution of the largest absolute value of k Student t variates and its applications", Biometrika 58:323-332.
- R. B. Bechhofer and C. W. Dunnett (1988), "Tables of Percentage Points of Multivariate Student t Distributions" (Selected Tables in Mathematical Statistics, No. 11), Providence, RI: American Mathematical Society.

Peter Fortini

A table of percentage points of the distribution of the largest absolute value of k Student t variates and its applications

By GERALD J. HAHN AND BIOHARD W. HENDRICKSON General Electric Company, Scheneciady, New York

SUMMARY

A table of 1007% points of the maximum absolute value [i] of the k-variete Student i distribution with ν degrees of freedom and common correlation ρ is given for various values . of k, ν , ρ and γ . The application of these tables to problems dealing with the construction of simultaneous confidence and prediction intervals is briefly described.

1. Introduction

The multivariate Student i distribution appears to have been first discussed by Dunnett & Sohel (1954, 1955) and by Cornish (1954). In particular, the expression for the k-variate Student i probability density function with v degrees of freedom is

$$f(t_1,...,t_k;\nu,R) = \frac{\Gamma(\frac{1}{2}(k+\nu))|R|^{-\frac{1}{2}}}{(\nu\pi)^{1/2}\Gamma(\frac{1}{2}\nu)}(1+t^*R^{-1}t/\nu)^{-\frac{1}{2}(k+\nu)}$$

: where $t = (t_1, ..., t_k)'$ and R is a $k \times k$ element correlation matrix. We shall be concerned with the special case where all off-diagonal elements of R are equal to a constant value ρ and will denote the resulting probability density as $f(t_1, ..., t_k; \nu, \rho)$.

This article provides tabulations of percentage points of the maximum absolute value [4] of the &-variate Student & distribution with v degrees of freedom and common correlation ρ , i.e. the tabulated values given here are the solutions $u=u(k,\nu,\rho;\gamma)$ to

$$G(u) = \int_{-u}^{u} \dots \int_{-u}^{u} f(t_1, \dots, t_k; \nu, \rho) \, dt_1 \dots dt_k = \gamma$$

for various values of k, ν, ρ and γ . Application of these tabulations to problems dealing with the construction of simultaneous prediction and confidence intervals are indicated in § 8. Many, but not all, of these applications have been presented previously in the literature. Some existing specialized tabulations of $u(k, \nu, \rho; \gamma)$ are given by:

- (a) Dunn & Massey (1965) for limited values of k and v; (b) Dunnett (1984) for $\rho = 0.5$, and $\gamma = 0.95$ and 0.99;
- (c) Pillei & Ramachandran (1954) for $\rho=0$ and $\gamma=0.95$;
- (d) Stoffens (1989) for h = 2. In addition, Dunnett (1964) provided adjustment factors to his tabulations for p=0.5 to obtain values of $u(k, \nu, \rho; \gamma)$ for values of $0 \le \rho < 0.5$. These adjustment factors were claimed by Dunnett to provide accuracy to one unit in the second decimal place over the range 0.125 < ρ < 0.5 and for the extreme case where ρ = 0, to give a value which is too high, but even then by only approximately three units in the second decimal place before

rounding. These claims were supported by the results of the computer program described below. In addition, a table of G(u) for various combinations of k, ν and ρ has been developed by Dunn, Kronmal & Yee (1908).

Despite the preceding specialized tabulations, there is, as indicated by Miller (1966, p. 78), a need for more extensive tables. The purpose of the present tabulations is to help satisfy this need. Another related general set of tabulations is that of percentage points of the multivariate t^2 distribution given in an unpublished report by P. R. Krishnaich and J. V. Armitage for all combinations of k = 1(1) 10, $\nu = 5(1)$ 36, $\rho = 0.05$ (0.05) 0.9 and $\gamma = 0.90$, 0.95, 0.975 and 0.98. The square roots of these values, which are given to two decimal places, yield values comparable to those given in the present tables.

Companion tables of percentage points of the maximum signed value of the multivariate Student ℓ distribution have previously been given in an unpublished report by P. R. Krishnaish and J. V. Armitege for all combinations of $k=1(1)\,10$, $\nu=5(1)\,85$, $\rho=0.0(0.1)\,0.9$ and $\gamma=0.90$, 0.95, 0.975 and 0.89. These tabulations have been published in the literature for $\gamma=0.95$ and $\gamma=0.99$ (Krishnaish & Armitage, 1986) and are applicable for the one-sided analogues of the applications indicated in §3.

2. Description of the tables

. Tables 1 to 4 provide tabulations of the factors $u(k,\nu,\rho;\gamma)$ for all combinations of k=1(1)6, 8, 10, 12, 15, 20; $\nu=8(1)$ 12, 15, 20, 25, 30, 40, 60; $\rho=0.0$ (Table 1), 0.2 (Table 2), 0.4 (Table 3) and 0.5 (Table 4); and $\gamma=0.90$, 0.95 and 0.99. Other values within the range of the tables can be obtained by standard interpolation techniques. A recent paper by Tong (1970) provides a protecture which can be used to obtain conservative estimates of the factors for k>20 using the tabulated factors for k=20. Also, some limiting values as $\nu\to\infty$ are given by Dunn & Massey (1965).

The values of $u(k, \nu, 0.5; \gamma)$ in Table 4 for all combinations of k = 1(1) 6, 8, 10, 12, 15, 20; $\nu = 5(1)$ 12, 15, 20, 80, 40, 60; $\gamma = 0.95$ and 0.99 are taken from Dunnett (1964) and are given to two decimal places. The remaining values in Table 4 and all the values in the other tabulations here were obtained using a new computer program and are given to three decimal places.

The basis of the computer program is as follows. The program uses the result (see, for example, Gupta & Sobel, 1957) that, when all off-diagonal elements of the correlation matrix R are equal to a constant positive value ρ .

$$G(u) = \int_0^{\infty} \left[\int_{-\infty}^{\infty} \left\{ \Phi\left(\frac{us + \rho ly}{(1-\rho)!} \right) - \Phi\left(\frac{-us + \rho ly}{(1-\rho)!} \right) \right\}^n \phi(y) \, dy \right] g(s; \nu) \, ds,$$

where $\phi(y)$ and $\Phi(x)$ are the probability density and cumulative distribution function respectively of a standard normal variate, and $g(s; \nu)$ is the probability density of S, where νS^* is a chi-squared variate with ν degrees of freedom.

The program calculates G(u) using 20 point Gauss-Hermite quadrature to evaluate the inner integral and Gaussian quadrature with 10 points in each of four intervals, 40 points in all, to evaluate the outer integral. The program then obtains $u(\xi, \nu, \rho; \gamma)$ as the solution to $G(u) = \gamma$ by inverse interpolation. Comparison of the values obtained by this program with those from previous tabulations, where available, indicated close correspondence and, imparticular, accouracy to the number of decimal places shown; see Hahn (1970) for further details.

Table 1. 1007% points of the distribution of the largest absolute value of k Student t variates with ν degrees of freedom and common correlation $\rho=0.0$, i.e. values of $u(k, \nu, 0.0; \gamma)$

y\	, ∦ 1	3 ·	3	•	5	. 6	Ř	ţu	12	10	40
r	•				₩.	0.90					
_					-	4:011	4-279	4.471	-4-031	4.823	£-000
3	2.853	2.980	3-809	3.637	8-844		3-722	3-887	4.020	4.180	4-883
4	8.192	8.808	\$ -970	8-107	3-308	3-500 2-280	8-480	3.570	3-894	8.887	4.018
5	8-019	2-491	2.709	2-BG5	8-116		3.249	3.884		3-824	8.780
ð	1443	2-385	2.042	3.848	2-901	3-074	8-127	8.283	3.855	8-478	3.635
7	J-882	2-314	2458	2-725	2.860		8.038	3.188	3.255	3·878	3.533
8	1.860	2.208	3-494	2-850	8.780	2.883		8.088	3·179	3·292	8-430
9		2.224	2-447	8.608	2.728	2.819	8.970	8.039	8.150	3.220	3-358
10	1.813	2-193	2 410	8-508	2·678	2-771		2.084	8-072	3-178	3-313
. 11	1.708	2-109	8-881	2.520	2-862	2.793	\$-87 <i>6</i>		8.038	8,186.	
12	1782	2-149	2-357	2.501	B-012	2-701	2-840	2-946			
35	1.763	2.107	2.305	2-448	8-548	2.038	2.765	2.202	6.914	8-045	8-170
20	1-725	2.005	2.255	8-180	2-485	8.567			12:668	B-956	3-073
25	1.708	2:041	3.556	2-863	2,450	8-228	2.848	8.740	2.83€	2.203	3-016
.30	1.697	3.025	.2-207	2-381	8-426	2.503	2.620	5-405	2-78L	2-868	2-076
40	1.684	24008	2-188	B-805	2-397	9-470	3-280	2-671	2-741	2.925	2 931
80 •	1.071	1.986	8-160	2-278	2-305	2·43P	2-550	2:634	8.701	2-783	2.884
~~					•						•
					`Y =						
8	3-183	8-900	4-480	4.784	5.028	6.233	5-583	5.812	6.012	6.259	6-807
ď	2-777	3.882	3-745	4.003	4-202	4.366	4-821	4.817	4-975	5.166	5.409
ă	2-571	8-091	\$-899	8.619	8 -760	2-028	4-145	4.818	4-447	4-811	4.819
8	2-447	2.916	3-193	48B·B	8-541	8 654	3.858	4.008	₹-139	4.276	4-462
• ή	2.865	2-800	3 ∙056	8:236	3.876	3·48P	8.668	B-805	8-916	4.051	4.223
7 8	2-306	2718	2.968	3-125	3-2 66	3.865	8.983	9.660	3-764	8.801	4.053
ě	2.269	2.667	2-885	8.046	8-171	8-979	3.480	3.225	9-8RI	8.770	8.923
10	2.228	2·609	8-82B	2-284	3-103	3-100	3-351	3.468	8-662	3.577	3-823
li	2-201	3·571	2.784	8.693	2:016	8-142	3.288	3.400	3.491		3.743
12 ·	2-170	2.540	2-747	8-892	3.004	9-052	3.236	3-245.		8-561	8-877
15	2-132	2-674	2-669	2.805	8.910	2-994	3-126	8-997	2.203	8-409	3.586
20	2.086	2:411	2.694	2.723	2-819	2-898	8.020	8-114	8-190	8-262	9-300
25		8.974	2.551	2.573	2-766	2 842	2-959	8-048	3.121	3.208	\$-820
80	2-012	2.350	2-522	2.041	2-732	2 -805.	2-918	8-005	3:07 <i>5</i>	3 160	8-257
40	2-021	2-321	2.468	2-603	2-690	8-390	2-860	2-95\$	2.019	8-100	8.208
80	2.000	2.203	2.454	8.564	2-649	2-716	2-821	2-900	3.884	3.041	9-180
90	-		• ,	•	•						
					γ=						4
8	8-841	7-127	7.914	8-479	8·91 0	9-277			10.616		
4	4.804	5.462	5.985	6-362	6.066	6-897	7.274	7.585	7.801	8-087	8-451
ĕ	4.032	4-700	5-106	89B·3	9.652	5.812	0.100	0.933	0.218	6.744.	4.080
'ð	8/707	4.271	4.811	4.856	01046	2.503		.5.840	5.796	9.589	6.250
7	3.800	3.998	4.200	4.010	4.677	4.814	5.031	g-198	6.838	6.503	5.710
ě	3-955	2-809	4.080	1.273	4-424	4.567	4.743	4.894	2.014	6-168	9.361
. 9	8.250	8.078	8.932	4-100	4-239	4-358	4.532	4.072	4-785	4.024	8.103
iŏ	3-169	3.567	8-801	8.969	4.008	4.205	4.378	4-603	4.609	4.789	4.905
ii.	8·100	3-485	3.707	3.805	3-98B	4.087	4.247	4.370	4-470	4.593	4.750
19	3.056	8-418	3.081	8-782	8-899	3-995	4-140	4.268	4-359	4.475	4.025
		8-279	8-472	3-808	8-714	3-800	8.986.	4.010	4-125	4.230	4-963
••		8.140	8.328	8-446	8-541	8-817	3-738	3.931	3.907	3.999	4-117
20	1.788	8.076	8.239	3-854	8442	3-514	8.026	8-713	8.788	.3.860	8.976
25	1.760	3.027	8-186	3-295	3-379	8 448	8.555	8.037	8-704	3.785	3.889
80		2-969	3-119	8-225	3.303	3-367	3:408	3.545	3-807	8.083	8.780
40	2.705	2-913	3.055	8-104	3.229	3.390	3-384	3-486	8.515	8.596	3.875
60	2.860	2.414	0.500	A 4 A A							

ከትራት

Table 2. 100y% points of the distribution of the largest absolute value of k Student t variates with γ degrees of freedom and common correlation $\rho = 0.2$, i.e. values of $u(k, \nu, 0.2; \gamma)$

1	\	1	8	3	. 4	8	. 6	8.	10	19	16	20
						7	0.80	k**	3 2			
8		858	3.97									
4		133 015	2-65 2-68			8.937 8.089					4·119 8·778	
Ö		843.			2.803	2.937	3.046		3-342		3:570	
7		895	2-300			2.833	2.935		3414	8-313		
Š	į	860	2,25		2 688	2-758	2.850		3-122	8.914	3-926	
9	ŀ	838	2-217	2-685	2.586	2.702	2-768		8-052	8-141	3.248	
10			. 2- 167		8-546	2.658	2.749	2.889	2.997	3.083	8-167	\$-319
. 11		7,98	2-108		2-513	2.623	.2-711	2.846	8:052	3-036	8438	8.266
12		783	2-148		2-487	2-594 2-531	2.680	2-814	2-937	12-988 2-815	8-097 8-009	8-222 3-128
15 20		768 786	8-101 9-060		9-419 2-875	2-470	2.248	. 2441 2469	2-761	2.835	2-923	3.038
. 25		708	2-030		2.841	8-435	2.510	2.627	2-716	2.787	2878	2.981
30		87	2-030		2-910	8-432	2-485	9.500	2-896	8.758	2.839	2.045
40		84	2.000		2-298	2-883	2-455	2.566	2-840	2-717	2-768	2.900
60		71	1.081		2-267	2-384	2-124	2.532	2-613	2-679	B-757	2.850
						4 62	0.85	g s	e 5.0	ı e		-
8	3.1	22	8-940	4-403	4-727	4.978	6-178	5498	6781	5.923	6-154	8-445
ě	2.7		3:371		3.975	4-168	4.825	4.869	4.785	4.908 ·		5-816
8	2.8		8.083	3-888	8-596	8-760	8.808	4-108	4.881	4.890	4-545	4.742
6	2-4	47	2.908	3.178	8-369	3.218	3.635	3.821	3.954	4.070	4.219	4.895
7	8-8		2.798	8-042	8.216	8.823	8-463	8.684	8-788	8.872	4.000	4-103
8	2.3		2-711	2-940	8-111	\$-285	8-840	8-501	8-624	8.724	8-844.	
9	2.5		2-650 2-603	2.874 2.918	8-031 8-959	3-151	3·249 3·178	3-402 3-324	3.418 3.488	8:518 8:527	8-727 8-887	3-879 8-776
10 11	2-2 2-2		2.565	2·774	2.019	8.081	8-128	3-263	8-171	8.458	8-564	8-698
19	2-1		2-585	2-788	2.870	9-988	8.076		8-817		2.504	3.635
15	2.1	-	2-469	2-660	2-703	2.805	2-977		3-203		3-277	3-490
. 20	2.0		2-400	2-596	2.711	2-808	2.818	8-002	8.098	:-	\$·255	3-867
25	2.0	10	2-870	2-543	2-663	2.756	2.828		8:02B		3 ·183	3.291
30	2-0-	8	3.840	8-616	8.682	3·461 ·					8-137.	
. 40	.3.0		2-317	8-481		2.679	2-748				8 ∙097	3.179
80	2-00) 0	2.268	2-447	2 -556	2-039	2.705	808-2	2 .9 80	2-948	8-023	3.119
				•		7 =	0:09	•				
8	5.8		7-104	7-871		8-841	9-164			0.483 [
_ ≰	4.80		5-LL7	2.028	6-828	8-607	6.836				7-978	8-816
Б	4.03	-	4.690	2.081		5.589					6-848	6.030
. 6	8.70		4-263	4.585	4:491 4:833 -		5·168 4·786				5 917 5 445	6·147
7 8	\$-50 3-36		3-803 3-803	4-283 4-06A .		4.403	4.628					6.903
ŷ	8.26		2·666	3.911			4.881		4.680	4.74A	4-881	5.051
10	8-16		8-662				4-186		4-474		4.700	4.859
ii	8.10		3-480		3.854		4-071	4-225	4.344	4-440		4.703
19	8.08	6	3:414	8:028	3-771	8-886	9-970				4.413	4 •587 •
15	2.9	7	8-276			3.703	3.787				4-204	4-382
20	2.81		8-140			8.638	8-807					4.084
25	2.78		9.079			8-435 ,	8-506					3.959
80	3.40		8-039				8-440					3·872
40	2.70	-	2-907				108.8				8·679 8·677	7·707 3·868
60	2.80	U :	2.911	8-052	O_TDA (8-024	8 ∙285	8-878	A. BEA	3.201	6-01 L	g-000

Table 8. 1009% points of the distribution of the largest absolute value of k Student t variates with ν degrees of freedom and common correlation $\rho=0.4$, i.e. values of $u(k, \nu, 0.4; \gamma)$

	k 1	2	3	4	5	6	8	10	19	15	20
	•				· 7 •	0.80					
3	2-352	2-941	2-292	8-519	3-700	3.845		4.237			
4	2-131	2.623	2-905	3-101	3-260			3.69(
5	2.015	2-155	2-700	5-880	3-018	8-120		8-410 8-233			
6	1.913	9.852	2.584 2.502	2·745 2·653	2·807 2·788	2.905 2.861	3-117 3-004	3.172			
7 8	1-860	2·283 2·283	8.002	2-587	. 5.004	2.780	2.022	8.020			
ş	1-883	2.195	8-398	2-58B	2.044	2.720	2.860	B-960			3-257
10	1.818	2-168	2.363	R-489	2-809	2-684	2-912	2-909			
11	1-796	2-142	2-335	2-468	2.508	8.649	2:778	8-807		3.084	
12	1.782	B-123	2.819	0.448	2-541	8-620	8-763	9-884	•	3-9B0	
15	1.493	2.081	2.203	2-387	8-481	8-556	2-673	2-760		8-916	
20	1.725	2041	2-216	988-8	2.424	2.495	8-608	8-690	2-757 2-713	2·837 2·701	2.988 2.888
25		2 010	2-188	2.808	3-890	2-460	3-557 2-562	8-849 2-821	2.584	2.780	
80	1-697	8-003	2-169	2.283	2-368	2-437 2-408	2-510	2:587		2.728	
40	1-68%	1-986	2-148 2-124	2·257 2·233	2-341 2-315	2-879	2-478	2.554	2-615	2.680	
60	1.671	7.840	9.154	9-24A						* ***	
	-				-	0.95	W 404	0.0	v. 466	8-898	0.155
8	8-188		4-824	4.620	4.846	5·026	6-809 4-480	4-288 0-088	. 5·693 4·730	4.891	E-098
4	2.177	8-337	3.605 3.333	. 5 •804 3•528	4·069 3·677	4·210 8·798	8-986	4.198	4.243	4.881	
5 8	2-571 2-447	8-053 2-883	3-134	3.020	8-448	3-552	8-718	8-847	3.950	4.074	4.230
7	2-255	2.770	8.002	3-184	3-268	8.888	8-543	3.661	3.756	3.870	4014 .
8	8.806	2-690	2.809	8.001	3-177	8-271	8-417	2.238	8-617	3.725	3.800
9	8-262	8.880	2-839	2-984	8.095	8-184	3-823	9-429	2-513	3-818 2-531	3.745 3.855
10	2.228	2.584	2-785	2.925	8 032 -	8-083	8·360 3·360	3.200 3.200	8·453 8·360	2.021	3.460
11	8-901	2-547	2·742 2·707	2·877 2·888	8.980 2.989	8.020	8-146	8-240	8417		3.525
12	2·179 2·182	2-517 2-452	2-63B	2.756	2.860	2-027	8-048	8-133	8-205	8-291	3-400
15 20	2 OB6		2-500	2.677	2.766	2-837	2.947	8.081	3.098	8-178	3-280
25	2.080	8-308	2-520	2.631	2.718	2-788	2-891	2.971	3.036	3.113	8-211
30	2.048	2.332	2-492	2.802	2.885	2.751	2.854	886.2	8.995	8.070	3-165
40	2-021	2-804	2-459	2.565	2.046	2-711	2.810	2-985	3-312	8-01B	3.110
60	2-000	2-275	9-420	2.530	2.008	2670	2-788	8.838	2-897	2-980	8.054
		,			7=	O-88,		•			
3	5-841	7.033	7.740	8-240	8-023	8.982	9-414		10.074		10-874
4	4-604	5-401	5.874	6.309	6 467	6.878	7.000	7:249	7-449	7-688	7-001
8	4-088	4.626	6.024	9-384	5 485	8:848	. 5.903	6:000	6.258	6:44 <u>9</u> 8:748	6-682 5-948
•	3.707		4.545	4.704		5.071	0.380 4.898	5-449 5-088	5.155 5.155	5-207	5-477
7	3-500	8-967	4:241 4:031	4-485 4-207	4.313	4.794	4.624	4.755	4.881	4.990	5-154
8	3-255 3-250	3·783 8·649	2-879	4-041	4.107	4.288	4-427	4.549	4.847	4.768	4.918
10	8-160	3.546	3-768	8-016	4.034	4-129	4-977	4.892	6-686	4.599	4-789
iĭ	3-100	8-404	3.671	8-817	8-929	4.019	4.100	4.269	4.857	4403	4.598
12	3.055	3-400	8.508	8.787	3.844	3-981	4.060	4-170	4.264	4.850	4-484
15	2-947	3-203	3·41i	3·871	8·00B	8-740	8-E09	8.568	4.039	4-181	4-247
20	2-845	3-135	3.801	3.415	3.504	3.574	8-885	3.709	8-837	8.001	4·030 8·800
25 .	2-788	3.008	8-219	3.827	8-410	3-477	3.581	8-860 3-590	3·725 3·050	8·809 3·720	8-830
80	2.750	8-016	3-166	8.270	\$-869	8-415	3·514 8·489	8-505	3-502	8-039	8-792
40	2.705	2.859	3.103	8-102	8-277 8-207	3-387 8-264	8-808	8-421	3.411	3.512	3.038
60	2-000	2.804	3.040	8-184	d.KAL	0.304	0.000	A. 241	7		•

Table 4. 1007% points of the distribution of the largest absolute value of k Student t variates with ν degrees of freedom and common correlation $\rho=0.5$, i.e. values of $u(k,\nu,0.5;\gamma)$

ų	\	9	3	6	5	6	. 8	10	19	16	30
_	-				7	2.90 ≈					
3	2-35	3 2.91	9 3.28								
4											
5							8-207 8-047				
9											8-880
8										8-124	
9	1.83							2.893			
10		9.24						2.814 2.805			
· 11	1-70: 1-70:						2.716 2.687	8-773	2.841		
15	. 1.78			2.855			2-692	2.704	2.769		_
20	1.72			2.804				9-637			
25	1-708			2-274	2-358	2-421	8-523	8-507	2.058		
80	1.693	, .1.598	8-147	2.254		498-R ,	9-498,	2-578	2.881		2-790
40	1.984			8-930	8-309	2:373	2-45B	2.240	2.598		2.763
60	1.671	1.952	8-104	2-201	2.284	2.845	2-439	2-209	2-565	2.632	2-718
					'y =	0.85					
8	4-183	3.867	4-268	4.538	4.748	4.918		6.878		. 5.718	6-953
4	2-777			3.838		4.186	4-328	4·489 4·03	4·506 4·14	4·752 4·26	4·988 4·48
. 5	2.57	3·03 2·86	3·20 3·10	3:48 3:25	3·52 3·39	3·73 3·49	8·9() 3·84	3:76	3.88	2·27	4:11
8	2·45 2·85	2·20 2·75		8.18	8.24	3.83	3.47	8:58	8-67	3.78	8.01
Ŕ	2-81	2-67	2.88	8.02	3.13	8.22	8-88	8:46	3.54	8 64	8.76
9	2.20	2.81	8.81	2.95	8.05	3.14	8-20	\$.86	8-64	8-49	8.65
10	2.23	2.67	8:78	2-89	2:00 2:04	3-07 8-02	8·10 3·14	8.29 3.23	3·38 8·80	8·45 8·39	8·57 8·50
·31.	2·20 2·18	9-53 2-50	9:79 2:68	2·84 2·81	2-9D	2-28	8.00	3-18	8-25	3.34	8:45
15	2.13	-	2.81	2.73	2-82	2-89	8.00	3.08	8-15	8-28	8-38
20.	2.02	2.38	2.54	9-65	2.73	2.80	2.90	2.98	3.05	3.12	9-22
26	2-030	2-844	2.200	2.507	3-618	2.752	2.858	2.927 .		8-028	2-150
20	2.04	8-82	9.47	2.58	3-69	2-72	2.83	2-89	2.25	8-02	8·11 3·06
40	2.03	9-20	B-44	3-24	2·62 . 2·63	2·88 2·64	947 948	9-85 2-80	2·90 2·86	9.97 2.92	3·00
60	2.00	2-27	8-41	2.51			6.16	E-0V	4.00	2.02	***
				•	_ γ w _.	-	Ø·189	9-527	A.MAT 1	10-129	10.200
3.	6-841 4-604	6.974 5.364	7·839 5·809	8·104 8·121	8·459 6·861	8·748 8·554				7-488	
# ' 5	4.03	4.83	4:98	5.22	6-41	5.56		5-9B	6 12	6.80	0.52
ŏ	8.71	4.21	4.51	4.71	4.87	5-0D		5-85	5-47	6-82	5-81
7	8-50	3.95	4.21	4-89	4.63	4.84			9:09	2-1.5	6-86
8	3.80	8-77	4.00	4-17	4-29	4/10			4·78 4·87	4·90 4·88	5.05 4.82
9	8-25	8-63	3.85	4·01 3·88		4·98 4·08			4.42	4.02	4.85
10	3-17	3-58 9-45	8·74 8·68	3·25 8·70		3.28			4.29	4-89	4.52
11 12	3-05 ·	8·45 3·39,	. 3·58			3-89			4-19.	4.29	441.
15	2.95	3.25		8-55		8.71			8-69	407	4.18
30	2.86	3-13		8-40		3.55			3:80		1.97
25	2-788	3:055	3.905	8-809	8-868	3-152			8-887 8-48	8·769 3·89	1·852 3·78
30	2.75	8.01	8-15	8.05	8.33	3-89			8-0B 3-53	3:80	8-86
40	2.70	2.95		* * *		3-28 3-83			3·45 3·03	8.51	8-5D
60	3-00	2-90	3.03	8,12	0.10	V-00		- 4A		. · ·	

3. Applications of the tabulations

Given below are a number of applications of the tabulations. Further details and numerical examples are given in an unpublished technical report by G. J. Hahn.

8.1. Prediction intervals to contain all of k future means and when the estimate of or is pooled from several samples

A simultaneous 100% % prediction interval to contain b future observations is an interval which will contain the values of all b such observations with a specified probability %. Hahn (1969, 1970) provided tabulations of factors for constructing one-sided and two-sided simultaneous prediction intervals given the values of a past sample of n observations from the same normal distribution. Also, Ohew (1968) suggested two approximate procedures for obtaining such intervals.

The percentiles given liere can be used to obtain the required factors in the preceding situation. However, they also apply in more general cases where (a) one desires simultaneous prediction intervals to contain the means of all of k future samples from the given normal population, where the ith sample is based on m_i observations (i=1,...,k); and (b) the given information consists of a single sample to estimate μ_i but several samples to estimate σ^s .

10.3

In particular, let $Y_1, ..., Y_n$ be the known values of n random observations from a normal distribution with mean μ and standard deviation σ and let Y denote the mean of the given sample. Also let S^n be an estimate of σ^n which is independent of $Y_1, ..., Y_n$ such that $\nu S^n/\sigma^n$ follows a chi-squared distribution with ν degrees of freedom.

Let $X_1, ..., X_k$ be the unknown sample means of k additional samples, based on $m_1, ..., m_k$ observations from the same normal distribution, where the $\sum_{i=1}^k m_i$ additional observations are independent of one another and are also independent of Y and S^k . If $m_i = m$ (i = 1, ..., k), i.e. all future samples are of the same size, an exact two-sided simultaneous 10by % prodiction interval to contain all k future means is

$Y \pm u(b, \nu, m/(m+n))\gamma S((1/m) + (1/n))^{\frac{1}{2}}$.

In the general case, where $m_i + m(i-1,...,k)$, conservative two-sided 100y% simultaneous prediction intervals to contain all k future means are

$$Y \pm u[k, \nu, \min m_i](n + \min m_i); \gamma) S((1/m_i) + (1/n))!$$
 (i = 1, ..., k).

The preceding result follows readily from a theorem by Sidak (1968) and is sharper, i.e., leads to shorter intervals, then some approximations previously suggested by Chew (1988). Specifically, Sidak's theorem is as follows. Let $X_1, ..., X_k$ be multivariate normal variates with zero means and variances 1 and under probability law $P_{\lambda_1,...,\lambda_k}$ with correlation matrix $(\lambda_i \lambda_j \rho_{ij})$ for $i \neq j$ depending on the k parameters $\lambda_1,...,\lambda_k$, where $0 \leq \lambda_i \leq 1$ (i = 1,...,k). Also let S be a positive random variable which is independent of $X_1,...,X_k$. Then

$$P(\lambda_1,...,\lambda_k) = P_{\lambda_1,...,\lambda_k}(X_1/S < u_1,...,X_k/S < u_k)$$

is a nondecreasing function of each λ_i , $0 \le \lambda_i \le 1$ (i = 1, ..., k). A simpler proof of this theorem than that originally given has since been obtained by Jogdeo (1970).

8.2. Multiple compartson between k treatment means and a control mean

The problem of the simultaneous comparison of the means of k treatments with that of a control group has been considered by Dunnett (1955, 1964), and the latter reference provides tabulations as described in §1. In particular, let $Y, X_1, ..., X_k$ be independent sample means from a control group and from k treatment groups based upon $n, m_1, ..., m_k$ independent observations, respectively, from normal distributions with unknown population means $\mu_0, \mu_1, ..., \mu_k$, respectively, and a common unknown variance σ^2 . Let $\nu S^2/\sigma^2$ be a chi-squared variate with ν degrees of freedom that is independent of $Y, X_1, ..., X_k$.

Then if $m_i = m(i = 1, ..., k)$, i.e. each treatment involves the same sample size, a set of k exact two sided 100 γ %, simultaneous confidence intervals to contain the true mean differences between the control group and each of the treatment groups are obtained as

$$(X_i - Y) \pm u(k, \nu, m/(m+n); \gamma) S((1/m) + (1/n))$$
 (i = 1, ..., k).

In the general case, where $m_i + m$ (i = 1, ..., k), it follows from Sidak's (1968) theorem that corresponding conservative two-sided 100 γ % simultaneous confidence intervals are obtained as

$$(Z_i - Y) \pm u(k, \nu, \min_{i} m_i / \min_{i} (m_i + n); \gamma) S\{(1/m_i) + (1/n)\}^{\frac{1}{2}} \quad (i = 1, ..., k).$$

8.8. Simulidaeous confidence intervals to contain all of k population means

Assume that $X_1, ..., X_k$ are independent sample means based upon $m_1, ..., m_k$ independent observations, from k normal populations with unknown means $\mu_1, ..., \mu_k$ and unknown common variance σ^2 . Also let $\nu S^i/\sigma^k$ be a chi-squared variate with ν degrees of freedom that is independent of $X_1, ..., X_k$. Then a set of exact two-sided 100 γ % simultaneous confidence intervals to contain all of the $\mu_k(i=1,...,k)$ is obtained as

$$X_i \pm u(k, \nu, 0.0; \gamma) \mathcal{B}(1/m_i)^{\dagger} \quad (i = 1, ..., k)_1$$

see Miller (1985, p. 71). If the correlations between the sample means are not all zero, the preceding expression still applies, but is conservative. This result, too, is a consequence of Sidak's (1988) theorem.

8-4. Simultaneous confidence intervals to contain k regression coefficients

Let $B_1, ..., B_k$ be the least squares estimates of the parameters $\beta_1, ..., \beta_k$ in the linear regression model $y_i = \beta_1 x_{i1} + \beta_k x_{i2} + ... + \beta_k x_{i3} + \epsilon_i$ (i = 1, ..., n).

where y_i is the observed value of the dependent variable, $x_i = 1$, x_i , ..., x_{ik} are the known values of the (k-1) independent variables and the ϵ_i are independently normally distributed random variables with mean 0 and common variance σ^2 . Also let X denote the design matrix of the n independent observations with typical element x_{ij} (i=1,...,n;j=1,...,k) and let e^{it} be the sith diagonal element of the matrix (X'X)⁻¹. Finally, let $vS^{ij}\sigma^2$ be a chi-squared variate that has v degrees of freedom and which is independent of the y_i .

Then two-sided 100% simultaneous confidence intervals to contain a subset R consisting of L of the k regression coefficients are obtained as

 $B_t \pm u(k', \nu, 0.0; \gamma) S(o^{tt})^{\frac{1}{2}} \text{ (if } K).$

1.1

These intervals are exact in the special case where the corresponding columns of the design matrix are orthogonal; see Miller (1960, p. 71). For other eases, the proceeding simultaneous confidence intervals are conservative, again as a result of Sidek's (1958) theorem.

3.5. Miscellaneous applications of the tabulations

The following further applications of the tabulations will be mentioned only briefly. Further details are given in the indicated references.

1. The construction of simultaneous confidence intervals to contain any linear combinations of the population means; see Miller (1906, p. 71) and Dunn & Massey (1965).

2. The construction of a confidence band for a regression line over a finite range; see Dunn (1968).

3. The construction of confidence intervals to contain certain interactions in a two-way fixed effects analysis of variance model; see Dunn & Massey (1985).

4. The construction of simultaneous prediction intervals to contain each of k future observations based on a regression analysis.

5. The construction of simultaneous confidence intervals to contain the true regression equation at each of & conditions.

The last two items are discussed in detall in an unpublished technical report by G. J. Hahn,

This work received the generous support and encouragement of Dr Richard L. Shuay, Manager, Information Studies Branch, General Electric Research and Development Center. and benefited from many useful discussions with our colleague, Dr Wayne Nalson.

Note added in proof. Part of the unpublished tables of P. Krishnaiah and J.V. Armitage, mentioned in \$1, have since appeared in a book edited by R. O. Bose et al. (1970), Besays in Probability and Statistics, University of N. Carolina Press.

References'

CHEW, V. (1998), Simultaneous prediction intervals. Technometries 10, 393-31.
CORNIGH, E. A. (1954), The multivariate small t-distribution associated with a set of normal sample deviates. Amiralian J. Phys. 7, 531-42.

Duna, O. J. (1988). A note on confidence bounds for a regression line over a finite range. J. Am. Stallet Asr. 68, 1028-33.

DUNN, O. J., Bronnet, R. A. & YES, W. J. (1988). Tables of the multivariate t-distribution. School of Public Health, University of California at Los Angeles.

DUNK, O. J. & Milanne, F. J. (1985). Estimation of multiple contrasts using s-distributions. J. Am. Stotlet. Ast. 60, 513-88.

DUNKERT, C. W. (1955). A multiple comparison procedure for comparing several treatments with a control. J. Am. Stallet. Aus. 50, 1096-1121.

DUNNERT, C. W. (1964). New tables for multiple comparisons with a control. Biometrics 20, 492-91. DUNNERY C. W. & Bonks, M. (1964). A bivariate generalization of Student's t-distribution with tables

for certain special cases. Biometrika 41, 163-69.

DUNNESS, C. W. & Sonza, M. (1956). Approximations to the probability integral and certain percentago points of a multivariate analogue of Student's 4 distribution. Biomeirika 42, 258-60:

GUPTA, S. S. & SOREL, M. (1957). On a statistic which arises in selection and ranking problems. Ann. Math. Statist. 28, 987-67.

FLARM, G. J. (1909). Pactors for calculating two-sided prediction intervals for samples from a normal distribution. J. Am. Statist. Acs. 64, 878-88.

HARN, G. J. (1970). Additional factors for calculating prediction intervals for samples from a normal distribution. J. Am. Statist. Ass. 65, 1868-70.

Joodeo, K. (1970). A simple proof of an inequality for multivariate normal probabilities of rectangles.

Ann. Math. Statist. 41, 1867-9.

KRESENALLE, P. R. & ARMITAGE, J. V. (1986). Tables for multivariate t-distribution. Sankhyā B, 28

MILLER, R. G. (1966). Simultaneous Statistical Inference. New York: McGraw-Hill.
PILLE, R. C. S. & RAMAGRAMDRAN, R. V. (1954). Distribution of a Studentized order statistic.
Ann. Mail. Statist. 25, 585-71.

SIDAE, Z. (1988). On multivariate normal probabilities of reclangles. Ann. Math. Stoilet. 39, 1425-

Exercise; F. E. (1969). Critical values for bivariate Student 4-tests. J. Am. Skildt. Ass. 64, 037-40. TONG, Y. L. (1970). Some probability inequalities of multivariate normal and multivariate s. J. Am. Statist. Ass. 65, 1243-7.

[Received September 1970, Revised December 1970]

Some key words; Multivariate a distribution; Simultaneous prediction intervals; Simultaneous confidence intervals; Multiple comparisons.

Appendix H

Statistical Analysis

RCRA-D1	pH Analysis

Upgradient Well	Upgradient Conc.	Upgradient Nat. Log	Upgradient Avg.	Downgradient Conc.	Downgradient Nat. Log
RCRA D-5	7.03	1.95	1.897	6.07	1.80
RCRA D-6	6.62	1.89			
RCRA D-14	6.53	1.88			
RCRA D-15	6.50	1.87			
Variance	0.0013				
T-value	-2.316				
Critical T-value	5.61				

RCRA-D2 pH Analysis

Upgradient Well	Upgradient Conc.	Upgradient Nat. Log	Upgradient Avg.	Downgradient Conc.	Downgradient Nat. Log
RCRA D-5	7.03	1.95	1.897	6.88	1.93
RCRA D-6	6.62	1.89			
RCRA D-14	6.53	1.88			
RCRA D-15	6.50	1.87			
Variance	0.0013				
T-value	0.778				
Critical T-value	5.61				

RCRA-D3 pH Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	7.03	1.95	1.897	6.70	1.90
RCRA D-6	6.62	1.89			
RCRA D-14	6.53	1.88			
RCRA D-15	6.50	1.87			
Variance	0.0013				
T-value	0.123				
Critical T-value	5.61				

RCRA-D4 pH Analysis

KCKA-D4	pri Anaiysis				
Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	7.03	1.95	1.897	6.74	1.91
RCRA D-6	6.62	1.89			
RCRA D-14	6.53	1.88			
RCRA D-15	6.50	1.87			
Variance	0.0013				
T-value	0.270				
Critical T-value	5.61				

RCRA-D7 pH Analysis

KCKA-D/	pri Anaiysis				
Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	7.03	1.95	1.897	6.61	1.89
RCRA D-6	6.62	1.89			
RCRA D-14	6.53	1.88			
RCRA D-15	6.50	1.87			
Variance	0.0013				
T-value	-0.211				
Critical T-value	5.61				

RCRA-D8 pH Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	7.03	1.95	1.897	7.68	2.04
RCRA D-6	6.62	1.89			
RCRA D-14	6.53	1.88			
RCRA D-15	6.50	1.87			
Variance	0.0013				
T-value	3.494				
Critical T-value	5.61				

RCRA-D9 pH Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	7.03	1.95	1.897	8.30	2.12
RCRA D-6	6.62	1.89			
RCRA D-14	6.53	1.88			
RCRA D-15	6.50	1.87			
Variance	0.0013				
T-value	5.411				
Critical T-value	5.61				

RCRA-D10	pH Analysis
----------	-------------

ACCION DIO	primaryon				
Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	7.03	1.95	1.897	6.15	1.82
RCRA D-6	6.62	1.89			
RCRA D-14	6.53	1.88			
RCRA D-15	6.50	1.87			
Variance	0.0013				
T-value	-1.992				
Critical T-value	5.61				

RCRA-D11 pH Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	7.03	1.95	1.897	6.63	1.89
RCRA D-6	6.62	1.89			
RCRA D-14	6.53	1.88			
RCRA D-15	6.50	1.87			
Variance	0.0013				
T-value	-0.136				
Critical T-value	5.61				

RCRA-D1 TDS Analysis

KCKA-DI	IDS Anaiysis				
Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	656	6.49	6.144	481	6.18
RCRA D-6	1,180	7.07			
RCRA D-14	241	5.48			
RCRA D-15	253	5.53			
Variance	0.5960				
T-value	0.036				
Critical T-value	4.31				

RCRA-D2 TDS Analysis

RCRA-D2	1 Do Inaiysis				
Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	656	6.49	6.144	565	6.34
RCRA D-6	1,180	7.07			
RCRA D-14	241	5.48			
RCRA D-15	253	5.53			
Variance	0.5960				
T-value	0.223				
Critical T-value	4.31				

RCRA-D3 TDS Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	656	6.49	6.144	700	6.55
RCRA D-6	1,180	7.07			
RCRA D-14	241	5.48			
RCRA D-15	253	5.53			
Variance	0.5960				
T-value	0.471				
Critical T-value	4.31				

RCRA-D4 TDS Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	656	6.49	6.144	504	6.22
RCRA D-6	1,180	7.07			
RCRA D-14	241	5.48			
RCRA D-15	253	5.53			
Variance	0.5960				
T-value	0.091				
Critical T-value	4.31				

RCRA-D7 TDS Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	656	6.49	6.144	890	6.79
RCRA D-6	1,180	7.07			
RCRA D-14	241	5.48			
RCRA D-15	253	5.53			
Variance	0.5960				
T-value	0.749				
Critical T-value	4.31				

RCRA-D8	TDS Analysis
---------	--------------

Upgradient Well	Upgradient Conc.	Upgradient Nat. Log	Upgradient Avg.	Downgradient Conc.	Downgradient Nat. Log
RCRA D-5	656	6.49	6.144	428	6.06
RCRA D-6	1,180	7.07			
RCRA D-14	241	5.48			
RCRA D-15	253	5.53			
Variance	0.5960				
T-value	-0.099				
Critical T-value	4.31				

RCRA-D9 TDS Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	656	6.49	6.144	413	6.02
RCRA D-6	1,180	7.07			
RCRA D-14	241	5.48			
RCRA D-15	253	5.53			
Variance	0.5960				
T-value	-0.140				
Critical T-value	4.31				

RCRA-D10 TDS Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	656	6.49	6.144	331	5.80
RCRA D-6	1,180	7.07			
RCRA D-14	241	5.48			
RCRA D-15	253	5.53			
Variance	0.5960				
T-value	-0.397				
Critical T-value	4.31				

RCRA-D11 TDS Analysis

Upgradient Well	Upgradient Conc.	Upgradient Nat. Log	Upgradient Avg.	Downgradient Conc.	Downgradient Nat. Log
RCRA D-5	656	6.49	6.144	396	5.98
RCRA D-6	1,180	7.07			
RCRA D-14	241	5.48			
RCRA D-15	253	5.53			
Variance	0.5960				
T-value	-0.189				
Critical T-value	4.31				

RCRA-D1 TOC Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	1.1	0.10	0.108	1	0.00
RCRA D-6	1.4	0.34			
RCRA D-14	1.0	0.00			
RCRA D-15	1.0	0.00			
Variance	0.0252				
T-value	-0.608				
Critical T-value	4.31				

RCRA-D2 TOC Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	1.1	0.10	0.108	1	0.00
RCRA D-6	1.4	0.34			
RCRA D-14	1.0	0.00			
RCRA D-15	1.0	0.00			
Variance	0.0252				
T-value	-0.608				
Critical T-value	4.31				

RCRA-D3 TOC Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	1.1	0.10	0.108	1	0.00
RCRA D-6	1.4	0.34			
RCRA D-14	1.0	0.00			
RCRA D-15	1.0	0.00			
Variance	0.0252				
T-value	-0.608				
Critical T-value	4.31				

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	1.1	0.10	0.108	1	0.00
RCRA D-6	1.4	0.34			
RCRA D-14	1.0	0.00			
RCRA D-15	1.0	0.00			
Variance	0.0252				
T-value	-0.608				
Critical T-value	4.31				

RCRA-D7 TOC Analysis

Upgradient Well	Upgradient Conc.	Upgradient Nat. Log	Upgradient Avg.	Downgradient Conc.	Downgradient Nat. Log
RCRA D-5	1.1	0.10	0.108	1.1	0.10
RCRA D-6	1.4	0.34			
RCRA D-14	1.0	0.00			
RCRA D-15	1.0	0.00			
Variance	0.0252				
T-value	-0.071				
Critical T-value	4 31				

RCRA-D8 TOC Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.		Nat. Log
RCRA D-5	1.1	0.10	0.108	1	0.00
RCRA D-6	1.4	0.34			
RCRA D-14	1.0	0.00			
RCRA D-15	1.0	0.00			
Variance	0.0252				
T-value	-0.608				
Critical T-value	4.31				

RCRA-D9 TOC Analysis

Upgradient Well	Upgradient Conc.	Upgradient Nat. Log	Upgradient Avg.	Downgradient Conc.	Downgradient Nat. Log
RCRA D-5	1.1	0.10	0.108	3.2	1.16
RCRA D-6	1.4	0.34			
RCRA D-14	1.0	0.00			
RCRA D-15	1.0	0.00			
Variance	0.0252				
T-value	5.942				
Critical T-value	4.31				

RCRA-D10 TOC Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	1.1	0.10	0.108	1	0.00
RCRA D-6	1.4	0.34			
RCRA D-14	1.0	0.00			
RCRA D-15	1.0	0.00			
Variance	0.0252				
T-value	-0.608				
Critical T-value	4.31				

RCRA-D11 TOC Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	1.1	0.10	0.108	1	0.00
RCRA D-6	1.4	0.34			
RCRA D-14	1.0	0.00			
RCRA D-15	1.0	0.00			
Variance	0.0252				
T-value	-0.608				
Critical T-value	4.31				

RCRA-D1 Specific Conductivity Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient	
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log	
RCRA D-5	970	6.88	6.725	677	6.52	
RCRA D-6	1,670	7.42				
RCRA D-14	534	6.28				
RCRA D-15	557	6.32				
Variance	0.2889					
T-value	-0.345					
Critical T-value	4.31					

RCRA-D2 Specific Conductivity Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	970	6.88	6.725	900	6.80
RCRA D-6	1,670	7.42			
RCRA D-14	534	6.28			
RCRA D-15	557	6.32			
Variance	0.2889				
T-value	0.128				
Critical T-value	4.31				

RCRA-D3 Specific Conductivity Analysis

Upgradient	Upgradient	Upgradient Upgradient Upgradient Downgradient	Downgradient	Downgradient	
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	970	6.88	6.725	950	6.86
RCRA D-6	1,670	7.42			
RCRA D-14	534	6.28			
RCRA D-15	557	6.32			
Variance	0.2889				
T-value	0.218				
Critical T-value	4.31				

RCRA-D4 Specific Conductivity Analysis

RCKI-D4 Specific Conductivity That yasis						
Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient	
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log	
RCRA D-5	970	6.88	6.725	945	6.85	
RCRA D-6	1,670	7.42				
RCRA D-14	534	6.28				
RCRA D-15	557	6.32				
Variance	0.2889					
T-value	0.210					
Critical T-value	4.31					

RCRA-D7 Specific Conductivity Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	970	6.88	6.725	1390	7.24
RCRA D-6	1,670	7.42			
RCRA D-14	534	6.28			
RCRA D-15	557	6.32			
Variance	0.2889				
T-value	0.852				
Critical T-value	4.31				

RCRA-D8 Specific Conductivity Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	970	6.88	6.725	537	6.29
RCRA D-6	1,670	7.42			
RCRA D-14	534	6.28			
RCRA D-15	557	6.32			
Variance	0.2889				
T-value	-0.731				
Critical T-value	4.31				

RCRA-D9 Specific Conductivity Analysis

Rena-By Specific Conductivity Indivisis							
Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient		
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log		
RCRA D-5	970	6.88	6.725	583	6.37		
RCRA D-6	1,670	7.42					
RCRA D-14	534	6.28					
RCRA D-15	557	6.32					
Variance	0.2889						
T-value	-0.594						
Critical T-value	4.31						

RCRA-D10 Specific Conductivity Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	970	6.88	6.725	463	6.14
RCRA D-6	1,670	7.42			
RCRA D-14	534	6.28			
RCRA D-15	557	6.32			
Variance	0.2889				
T-value	-0.978				
Critical T-value	4.31				

RCRA-D11 Specific Conductivity Analysis

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	970	6.88	6.725	685	6.53
RCRA D-6	1,670	7.42			
RCRA D-14	534	6.28			
RCRA D-15	557	6.32			
Variance	0.2889				
T-value	-0.326				
Critical T-value	4.31				

RCRA-D8 Chloroform

Un and diant	The second second	I In one dient	Un one dient	D	Danmana diana
Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	1.00	0.00	0.347	0.26	-1.35
RCRA D-6	1.00	0.00			
RCRA D-14	1.00	0.00			
RCRA D-15	4.0	1.39			
Variance	0.4805				
T-value	-2.185				
Critical T-value	4.31				

RCRA-D8 Tetrachloroethene

Upgradient Well	Upgradient Conc.	Upgradient Nat. Log	Upgradient Avg.	Downgradient Conc.	Downgradient Nat. Log
RCRA D-5	1.00	0.00	0.904	0.49	-0.71
RCRA D-6	1.00	0.00			
RCRA D-14	1.00	0.00			
RCRA D-15	37.2	3.62			
Variance	3.2694				
T-value	-0.800				
Critical T-value	4.31				

RCRA-D10 Tetrachloroethene

Text Div							
Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient		
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log		
RCRA D-5	1.00	0.00	0.904	0.29	-1.24		
RCRA D-6	1.00	0.00					
RCRA D-14	1.00	0.00					
RCRA D-15	37.2	3.62					
Variance	3.2694						
T-value	-1.060						
Critical T-value	4.31						

RCRA-D8 Trichloroethene

Upgradient	Upgradient	Upgradient	Upgradient	Downgradient	Downgradient
Well	Conc.	Nat. Log	Avg.	Conc.	Nat. Log
RCRA D-5	1.00	0.00	0.573	0.32	-1.14
RCRA D-6	1.00	0.00			
RCRA D-14	1.00	0.00			
RCRA D-15	9.9	2.29			
Variance	1.3139				
T-value	-1.336				
Critical T-value	4.31				